Combinatonics

- Fundamental principles, examples
- Three main principles.
(Induction, Inclusion(Exclusion, pigeonhole)
- Combinatorial proofs, recurrence relations.
- Discrete probability

Combinatorice. F1

What is nombinatorics?

- the mathematics of counting.
- purely combinatorial on with combinatorial aspects.

Why we study it?

- application in other areas of mathematics
- applications elsewhere.
- graphs, networks
- algorithms
-biology ...
- easy to explain. "smart" solutions.

Some recaps on sets:

1) The elements of a set are distinct. A set contains one of each element
2) "Union" of sets A and $B: A \cup B$, the smallest set that contains elements in A or B :

$$
\{1,2\} \cup\{1,3\}=\{1,2,3\}
$$

3). "Intersection" of A and $B: A \cap B$: contains only
elements in common: $\{1,2\} \cap\{1,3\}=\{1\}$
$\{1,2\} \cap\{3,4\}=\phi$ S empty set.
${ }^{*}$ disjoint
4) $|A|$: cardinality, number of elements in A.
5). "partition": collection of disjoins subsets whose unison
is the set itself: $\{1,2,3,4\}$.

$$
\{1\},\{2\},\{3,4\},
$$

How to count?

Inst law of counting Add up exclusive option.

When allowed to choose items from sets A and B, there are $|A|+|B|$ options.
e.g. When choosing to watch 3 movies on to read 4 books there ane 7 op trow in total.

Ind law of counting: Multiply successive options when you first choose an element from A, then chase
another element from B, there are $|A| \cdot|B|$ options
Remark. 1) A and B can be different, the same, on overlaying.
2). generalises to n successive choices.
3). The "outcome" is an ordered list of successive choices.
(The order is important when A, B are not dis joint 7 .
The order can either make a difference on not.
eng. a) 3 shirts, 4 pants, 2 shoes, how many outfits?

$$
3 \times 4 \times 2=24
$$

b) 10 coin flips, how many possibilities?

$$
2^{10}
$$

c) How many possible 6-digit numbers?

$$
\left.9 \times 10^{5} \text { (tint digit cant be } 0\right) \text {. }
$$

d) How many words with strictly less than 5 letters?

$$
26^{4}+26^{3}+26^{2}+26 .
$$

Remark. Some choices from A might result in adifferent $|B|$:
e.g. a) There are 12 books in total, how many ways to take 4 books out and put them on a sheet?

$$
12 \times 11 \times 10 \times 9
$$

(Order matters)
b) How many possible 6-digis distinct numbers?

$$
9 \times \underset{\sim}{9} \times 8 \times 7 \times 6 \times 5
$$

3rd law of counting "Shepherds 'law"

- When counting H of sleeps, one can count $\# 1$ of legs and divide by 4 (provided each sheep has 4 legs.). Similarly, when we over count by a uniform multiplicative factor, we can correct it by dividing this factor.
when to apply?
- multiple outcomes that share a common feature.
- this outcomes are regarded as "equivalent classes".
e, g.

- We can count at of edges by summing up the degrees of each vertex
- each edge connects 2 vertices.

$$
-(2+3+2+3+2) / 2=6
$$

check two things

- make sure we are overcountion uniformly. (each sheep has same amount of legs)
- figure ont the size of overcounting
(the size of the legs is 4)

Remark. The shepardes law can be generalised so long as the average size ($\#$ of legs) remains the same; eng, 14 -leg, 1 3-leg and 15 -leg sheep.
eng. a) a) There are 12 books in total, how many ways to take 4 books out and put them on a bag?

$$
(12 \times 11 \times 10 \times 9) /(\underbrace{4 \times 3 \times 2 \times 1})
$$

(each sheep is a ser of 4 books)

For any 4 books, there are $4 \times 3 \times 2 \times 1$ way
we could have taken them.
(order does not matter)
b) Out of 52 cards, how many different 5 -card poker hands?

$$
52 \times 51 \times 50 \times 49 \times 48 / 5 \times 4 \times 3 \times 2 \times 1
$$

$$
=2,598,960
$$

(string)
Definition 1.1 An ontwhe is called a permutation of length K from sat $A, i f$ every element is in A and all elements are different.

Definition 1.2. For $n=1,2, \ldots$, define $n!=n \cdot(n-1) \cdots \cdot 3 \cdot 2 \cdot 1$.
define $0!=1$.
For $n \geqslant k$, define $P(n, k)=\frac{n!}{(n-k)!}$
Note that $P(n, n)=n$!

Proposition 1,3 If $|A|=n, 0 \leqslant k \leqslant n$, then there are $P(n, k)$
permutations of length k from $|A|$.
Which previous examples are permutations?
(when the order does not matter).

Definition 1.4 For a set A, a combination of X is a Subset of A.
e.g. How many combinations of size 2 from $\{a, b, c, d\}$? $\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\}$, or. $4 \times 3 / 2 \times 1=6$.

Definition 1.5 For $0 \leq k \leq n$. define

$$
C(n, k):=\frac{P(n, k)}{k!}=\frac{n!}{k!(n-k)!}
$$

Notation: $\quad\binom{n}{k}, C(n, k),{ }_{n} C_{k}, C_{k}^{n} \ldots$
"n choose K"
proposition 1.6. If $|A|=n, 0 \leq k \leq n$, there are
$C(n, k)$ combinations of length k from n.
which previous examples are combinations?
(when the order does matter).
proposition 1.7 $\binom{n}{k}=\binom{n}{n-k}$.
proof 1

$$
\begin{aligned}
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n!}{(n-k)!k!} & =\frac{n!}{(n-k)!(n-(n-k))!} \\
& =\binom{n}{n-k}
\end{aligned}
$$

proof 2 Let $|A|=n$. choose a combination of length K from $A, \quad x \subseteq A$. Every time we choose X, then there is a subset $A \backslash X$ of size $n-k$. Therefore, the number of ways to choose X and to choose $A \backslash x$ are the same. By proposition 1.6.
choose X: $\quad\binom{n}{k}$
choose $A \backslash X:\binom{n}{n-k}$

$$
\Rightarrow \quad\binom{n}{k}=\binom{n}{n-k} .
$$

Remark. Proof 1 is algebraic, proof 2 is combinatorial.

