F2. Examples, Eundamental principles I

Recall. 3 basic laws of counting:

1st law Add up exclusive options.
and law Multiply successive options
3rd law "Shepherd's law"
Permutation: $P(n, k)=\frac{n!}{(n-k)!}$
Combination: $C(n, k)=\frac{P(n, k)}{k!}=\frac{n!}{(n-k)!k!}$

Some exercises.
E,X,2,1 How many different ways to order letters A, A, B ?
Sol 1. $A A B, A B A, B A A$.
Sol 2. 31 ways to permute A, A, B, site of equivalent class: $2!$

$$
3!/ 2!=3
$$

Generalisation "Mississippi rule", to count the number of distinct permutations of a string: $A B C C C$

- Count \# of permutations as if the letters were distant

$$
A B C_{1} C_{2} C_{3}
$$

- Divide by the \# of equivalent permutations.
ecg. a). HAPPY:: $5!/ 2!$ distinct permulation.
b), $N O O N: 4!/(2!\cdot 2!)$
c) M ississippi: $11!/(4!\times 4!\times 2!)$.

E,X,2.2 How many ways can n people be seated at a round table?
I_{n} this case.

count as the same seating.
Sol. Let m be the $\#$ of ways of seating n people at a round table, and let h be the n of ways of choosing the "head" of a table.

- $h=n$.

Let us first choose a head, then read the string clockwise:

This gives all permutations. By the seand counting rule (multipircation) :
(Sanity check:

$$
\begin{aligned}
m \times h=P(n, n) & 3 p p l) . \\
\Rightarrow & m=\frac{P(n, n)}{h}=\frac{n!}{n}=(n-1)!
\end{aligned}
$$

E.X.2.3 How many ways can 8 people sit at a round table if Alice and Bob must sit next to each other?

Sol 1 Treat Alice and Bob as a single unit, then seat 7 "people" around the table, there are 6! ways, arrange Alice and Bob gives 2×6 ! ways.

Sol. Seat Alice anywhere. (Does not build up the size) Choose a seat for Bob: 2 (left on right)

Arrange the rest of 6 people. 6!

$$
\text { In total }=2 \times 6!
$$

E.X.2.4 Same as E.X.2,3, but Alice and Bob cant sit together?

Sol. ("they do not sit together"

$$
=\text { "they are not next to each over". }
$$

$$
\begin{aligned}
& \text { Total H }=(n-1)!=7! \\
& \text { Hoof ways }=7!-2 \times 6!=7 \times 6!-2 \times 6!=5 \times 6!
\end{aligned}
$$

Alternatively, sit Alice anywhere, the sit Bob somewhere not neat to her: 5 ways., Finally, permute the 6 people left: 6! ways. In total, $5 \times 6!$ ways.

E,X,2,5 How many ways to arrange 4 Ais and $2 B$'s at a round table?

Wrong sol: By the Mississippirule, there ane $6!/(4!\times 2!)=15$ permutations, since there are 6 positions, there must be

$$
15 / 6=2.5 \text { ways }
$$

501. Look at the distance between 2B's, since the rest of the circle are filled by A 's. Actually, the Shortest distance determines the arrangements.

$$
=A_{A}^{A} \bigodot_{B}^{B} A .
$$

The shortest distance between B 's can be $0,1,2$, so there are in total 3 arrangements.

What went wrong previously?
when applying the multiplication rule, we did not check that all permutations were distinct. eng.
$A B A A B A, B A A B A A$, are the same.

Ex,2.6 How many ways can we paint a rubic cube with 6 wooers?
Sol. Say we put red at the bottom.
choose top: 5 ways.
arrange the rest of 4 whors: 3 ! ways. In total: 5×3 ! ways.

Thu 2.7 Pascal's identity : $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$.
for $1 \leq k<n$.

Combinatorial proof. The idea of a combinatorial proof is to give a counting argument for sone identity, often by
counting the same thing in two different ways.
$E, X, 2,8$. For $n \geqslant 1$, show that. $S(n):=\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$

Look at the $(n+1) \times(n+1)$ array below, clearly, there are $(n+1)(n+1)$ points:

count the last n pins in the first column, last $n-1$ porno in the second column we get $n+(n-1)+\cdots+1=S(n)$.

By symmytry, in the uppentrrangle, there are $S(y)$ points too. There are ($n-+1$) points left.

$$
\begin{aligned}
2 \times S(n) & =(n+1) \times(n+1)-(n+1) \\
& \left.=(n+1) n . \quad \Rightarrow \quad S(n)=\frac{n(n+1)}{2}\right)
\end{aligned}
$$

E.x.2.9. Show that $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$.

We know that there are 2^{4} binary strings of length n.

$$
\text { (win toss })(\underbrace{0,1, \cdots}_{n})
$$

Fix k between 0 and n, and count the number of string with k 1's. Choose k positrons for 1 's and put 0 else where, \quad eng. $n=7, k=4, \quad 1001101$.

There are $\binom{n}{k}$ ways of choosing k positions. so there are $\binom{\eta}{k}$ binary strings of k i's.
summing over all possible numbers of 1 's: ($0 \ldots n$)

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Pry of Pascal identity:
Algebraic prof : $\quad\binom{n-1}{k-1}+\binom{n-1}{k}$

$$
\begin{aligned}
& =\frac{(n-1)!}{(n-k)!(k-1)!}+\frac{(n-1)!}{k!(n-1-k)!} \\
& =\frac{k(n-1)!}{(n-k)!k(k-1)!}+\frac{(n-k)(n-1)!}{k!(n-1-k)!(n-k)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{k(n-1)!}{(n-k)!k!}+\frac{(n-k)(n-1)!}{k!(n-k)!} \\
& =\frac{(k+n-k)(n-1)!}{k!(n-k)!} \\
& =\frac{n!}{k!(n-k)!}=\binom{n}{k}
\end{aligned}
$$

Combinatorial pry. Look at a set X with n objcets, and label one of the objects *, we know that X has $\binom{n}{k}$ subsets of size k.

To count the number of subsets. that includes *, thee are $\binom{n-1}{k-1}$ ways. (remaining elemerin)

To count the number of subsets then does not include $*$, there are $\binom{n-1}{k}$ ways.

By the first law of conation:

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} .
$$

