F4. Principle of Inclusion / Exclusion
E.x.4.1. Out of 100 students, 56 are registered with the math circle. 63 are registered with math $c \ln b$, and 42 are registered wroth both.

How many students are registered wish nothing?
(If we simply substract 63 and 56 from 100 , the we get -19 , which makes no sense, why?

Because we substracted the 42 students who registered in both comes twice.)

Sol: $100-63-56+42=23$.

Ex,4,2 Let x be a set, $|x|=40$, Let $A, B, C \subseteq x$ with

$$
\begin{aligned}
& |A|=15, \quad|B|=12, \quad|C|=14 . \\
& |A \cap B|=9, \quad|A \cap C|=7 . \quad|B \cap C|=4 . \quad|A \cap B \cap C|=3 .
\end{aligned}
$$

How many elements in $S \backslash(A \cup B \cup C)$?

Sol. First, 40-15-12-14
(Substraction $A \cap B, A \cap C, B \cap C$ twice.)

Second, $+9+7+4$ (add them back)
($A \cap B \cap C$ has been removed 3 times, and added back 3 times)
lastly, - 3 (remove $A \cap B \cap C$).

$$
|S \backslash(A \cup B \cup C)|=40-15-12-14+9+7+4-3=16
$$

Notation. Let X be asst,

- Let $P=\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$ be family of properties.
eli. $P_{1}=$ "belongs to set A ".
$P_{2}={ }^{n}$ greater than 3 and smaller than 7 ".
- For $S \subseteq\{1,2, \ldots, m\}$, Let $N(S)$ be the number of elements of S satisfying at least the properties $\left\{P_{i}, i \in S\right\}$:
- For $S=\phi, N(\phi)=|x|$. (satisfying at least nothing)
-Clearly, $N(\{1\}) \geqslant N(\{1,2\})$.
eng. In $E_{1} x, 4,2$, Let $P_{1}=$ "belong to A "

$$
\begin{aligned}
& P_{2}="-\cdots-B^{n} \\
& P_{3}="-C^{n}
\end{aligned}
$$

Then $N(\phi)=40, N(\{1\})=15 . N(\{2\})=12, N(13\})=14$.

$$
N(\{1,2\})=9 . \quad N(\{1,3\})=7 . \quad N(\{2,3\})=4 . \quad N(\{1,2,3\})=3 .
$$

The of elements satisfying none of P_{1}, P_{2}, P_{3} :

$$
N(\phi)-N(\{1\})-N(\{2\})-N(\{3\})+\underbrace{N(\{1,2\})+N(\{1,3\})+N(2,3\}-N(\{1,2,3\})}_{(-1)^{1}} \underset{(-1)^{2}}{N}
$$

Thm4.3 (Principle of Inclusion \Exclusion). Let x be a set and lat $P=\left\{P_{1}, \ldots, P_{m}\right\}$ be a family of properties. The number of elements that satisfy none of the properties in P is given by:

$$
\sum_{S \subseteq\{1,2, \ldots, m\}}(-1)^{|s|} N(S)
$$

E.X.4.4 How many integer solutions are there to
$x_{1}+x_{2}+x_{3}=20$, with $0 \leq x_{1} \leq 8,0 \leq x_{2} \leq 10,0 \leq x_{3} \leq 12$?

Sol. ${ }^{n} x_{1}+x_{2}+x_{3}=20^{n}$

For $x_{1}, x_{2}, x_{3} \geqslant 0$
"Stars and bars" method:

Imagine we distribute 20 balls to 3 people:

How many ways? $\binom{20+(3-1)}{3-1}=\binom{22}{2}$.
(Remark: How many solutions to.

$$
x_{1}+x_{2}+\cdots+x_{k} \leq n \text { ? }
$$

Ie's equivalent to " $x_{1}+\cdots+x_{k+1}=n$

$$
\binom{n+(k+1-1)}{k+1-1}
$$

Let $X=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}+x_{2}+x_{3}=20, x_{1}, x_{2}, x_{3} \geqslant 0\right\}$. then we
know there are $\binom{20+3-1}{3-1}=\binom{22}{2}$ integer solutborg, with $x_{1}, x_{2}, x_{3} \geqslant 0$.
so $|x|=\binom{22}{2}$.

Let $\quad P_{1}={ }^{"} x_{1} \geqslant 9^{\prime}$

$$
\begin{gathered}
P_{2}={ }^{n} x_{2} \geq 11^{9} \\
P_{3}={ }^{9} x_{3} \geq 13^{n} \\
N(\phi)=|x|=\binom{22}{2}
\end{gathered}
$$

Giving 9 1.5 to x_{1}, there are $\binom{11+3-1}{3-1}=\binom{13}{2}$
Solutions when $x_{1} \geqslant 9, x_{2}, x_{3} \geqslant 0$. So $N(\{1\})=\binom{13}{2}$

Similarly, giving 11 1's to x_{2}, there ave $\binom{9+3-1}{3-1}=\binom{11}{2}$
solutions to when $x_{2} \geqslant 11, x_{1}, x_{3} \geqslant 0$. So $N(\{3\})=\binom{11}{2}$
similarly, $N(\{3\})=\binom{7+3-1}{3-1}=\binom{9}{2}$.
Giving 9 i's to x_{1}, and 11 is to x_{2}, there are $\binom{0+3-1}{3-1}=1$
Solution when $x_{1} \geqslant 9, x_{2} \geqslant 11, x_{3} \geqslant 0$ so $N(\{1,2\})=1$.

There are 0 solution when $x_{1} \geqslant 9, x_{2} \geqslant 0, x_{3} \geqslant 13 . \Rightarrow N(\{1,3))=0$

$$
\begin{aligned}
& \left.1, \quad x_{1} \geqslant 0, x_{2} \geqslant 11, x_{3} \geqslant 13 . \quad W(\{2,\}\}\right)=0 \\
& x_{1} \geqslant 9, x_{2} \geqslant 11, x_{3} \geqslant 13 . \quad W(\{1,2,3\})=0
\end{aligned}
$$

By the 4.3, the number of solutions to

$$
x_{1}+x_{2}+x_{3}=0 . \quad 0 \leq x_{1} \leq 8, \quad 0 \leq x_{2} \leq 10, \quad 0 \leq x_{3} \leq 12 \text { is given by }
$$

$$
\begin{aligned}
& N(\phi)-N(\{1\})-N(\{2\})-N(\{3\})+N(\{1,3\})+N(\{2,3\})+N(\{1,2\})-N(\{1,2,3\}) \\
= & \binom{22}{2}-\binom{13}{2}-\binom{11}{2}-\binom{9}{2}+1
\end{aligned}
$$

Exercise In how many different ways can "UPPSALA" be rearranged sit. there are no occurances of

$$
{ }^{"} L A P P^{\prime}, " U P ", " S A P " \text {, on "PAL"? }
$$

sol 676.

Exercise. How many integers between 1 and 100 are not divisible by 2,3 and 5 ? (Sol: 26).

Application 1
Let A, B be two sets, and $f: A \rightarrow B$ a function.
$-f(A)=\{b \in B: b=f(a)$ for some $a \in A\}$, the image $+A$. under f.

- f is a sujection of $f(A)=B$.
- If f a surjection then $|A| \geqslant|B|$

Question: What's the total number of surjection from A to B ?

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.

$$
B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\} \text {. with } n \geqslant m \text {. }
$$

We say that a function $A \rightarrow B$ satisfies " P_{1} " if bi $f(A)$.

Lemma 4.5 Let $S \subseteq\{1,2, \ldots, m\}$, with $|S|=k$, the number of functions satisfyios P_{i} for every $i \in S$ is $(m-k)^{n}$.

Prof. Denote $c=\left\{b_{i}: i \in S\right\}$, then $|c|=k$, we can think of functions from A to B as strings of length η. taking elements from B where f maps to.

$$
\text { ecg, },\left\{b_{1}, b_{3}, b_{1}, b_{4}, b_{3}\right\} . \Leftrightarrow \begin{array}{ll}
f\left(a_{1}\right)=b_{1} . & f\left(a_{4}\right)=b_{4} \\
f\left(a_{2}\right)=b_{3} & f\left(a_{5}\right)=b_{3} \\
& f\left(a_{3}\right)=b_{1}
\end{array}
$$

Then functions satisfying Pr: String of length n taking elements fran $B \backslash C$. In total: $(m-k)$ elements. so there are $(m-k)^{n}$. such strings.

Definition 4.6 For $n \geqslant m \geqslant 1$, the stirling number of the
second kind is given by

$$
\left\{\begin{array}{l}
n \\
m
\end{array}\right\}=\frac{1}{m!} \sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(m-k)^{n}
$$

Thm4.7. Let $|A|=n .|B|=m, n \geqslant m$, then the number of surjections from A to B is

$$
S(n, m)=m!\left\{\begin{array}{l}
n \\
m
\end{array}\right\}=\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(m-k)^{n}
$$

pry. Note that a surjection is a function that fails all

$$
P_{1}, P_{2}, \ldots, P_{m}
$$

For each k, there are $\binom{m}{k}$ subsets $S \subseteq\{1,2, \ldots, m\}$.

$$
\text { with }|S|=k
$$

For each such S, there are $(m-k)^{n}$ function satotis p. for all $i \in S$.

Therefore by the principle of Inclusion / Exclusion: there are

$$
\begin{aligned}
S(n, m)= & \sum_{S \leq\{1,2, \ldots, m\}}(-1)^{s} N(S) . \\
& =\sum_{k=0}^{m}(-1)^{k} \underbrace{\binom{m}{k}}(m \underbrace{(m-k)^{n}} \\
& \text { of sinkers } \\
& \text { of size } k .
\end{aligned}
$$

E.X.4.8. Grandma knrued 5 distinct sweaters, In how many ways can she give them to 3 grandchildren sit. each child gets at least 1?

Sol: This is the number of surgections from \{sweater\} to \{grandchildren\}., which is.

$$
\begin{aligned}
S(5,3) & =\sum_{k=0}^{3}(-1)^{k}\binom{3}{k}(3-k)^{5} \\
& =\binom{3}{0} 3^{5}-\binom{3}{1} 2^{5}+\binom{3}{2} 1^{5}-\binom{3}{3} 0^{5} \\
& =150
\end{aligned}
$$

Application 2
Derangements.

A derangement is a permutation θ sit, $\theta(i) \neq i$ for all i.
eng. $\theta=4312$ is a derangement of 1234 ,

$$
\theta=4(2) 13 \text { is not }
$$

Thu 4.9 The number of derangement d_{n} of $\{1,2, \ldots, n\}$ is given by : $d_{n}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)!$

Prof. Let P_{i} be the property $\theta(i)=i$. Let $S \leq\{1,2, \ldots, n\}$, the number of permutations satisfying P_{i} for $\sigma \in S$ is

$$
N(s)=(n-|s|)!
$$

For each k, there are $\binom{n}{k}$ subsets S sit, $|S|=k$,

So $d_{n}=\sum_{S \subseteq\{1 \ldots, n\}}(-1)^{|s|} N(s)$

$$
=\sum_{k=0}^{n}(-1)^{k} \underset{\substack{n \\ k \\ \text { н it of } s \\ \text { sis } \\(n)=k .}}{(n-k)!} L(n-s \mid)!
$$

Ex, 4,10. You randomly send out 5 application letters to 5 univensitres.
Ln how many ways can you mess up all the applications?
Sol: $\quad d_{5}=\sum_{k=1}^{5}(-1)^{k}\binom{5}{k}(5-k)$!

$$
\begin{aligned}
& =\binom{5}{0} 5!-\binom{5}{1} 4!+\binom{5}{2} 3!-\binom{5}{3} 2! \\
& \\
& \quad+\binom{5}{4} 1!-\binom{5}{5} 0! \\
& =44 .
\end{aligned}
$$

