F5. Pigeonhole Principle. \& Generating fins

$$
\text { Notation: }[n]=\{1,2, \ldots, n\} \text {. }
$$

Pigeonhole Principle (PNP): If moljects (pigeons) occupy n places (pigeonholes) and $m>n$, then one place has at least 2 objects.
eng. If there are 13 students in the classroom, then at least 2 have birthdays in the same month.

Gerenalised Pigeonhole Principle (GPHP): If objects ounpy n places, and $m>k \times n$, then at lest 1 place has at least $k+1$ objects.
ag. If there are 37 staderats in the classroom, then at least 4 students have birthdays in the same month.

Applications
EX.5.1. A jencley store sells rings with 4 gems placed in a row, each gem takes one of the 3 colours, Show that if the store has 82 rings, then 2 rings have identical sequence of gems.

- 82 rings are the pigeons
- each gem cen be ore of 3 colours, So there are
$3 \times 3 \times 3 \times 3=81$. sequences. So there are 81 pigeonholes.
- By PHP: 2 rings have the same sequence,
E.X.5,2. For any $A \subseteq[200]$ with $|A|=101$. Then there exists $m, n \in A$

$$
\text { sit } n \mid m, n n \text { divides } m \text { " }
$$

" m is a multiple of n ".

- elements of A be pigeons.
- For the pigeonholes, hook at the 100 sets:

$$
\begin{gathered}
\left\{1,1 \times 2,1 \times 2^{2}, \ldots, 1 \times 2^{r} \cdots\right\} \\
\left\{3,3 \times 2,3 \times 2^{2}, \ldots 3 \times 2^{i} \cdots\right\} \\
\left\{5,5 \times 2,5 \times 2^{2}, \ldots 5 \times 2^{i} \cdots\right\} \\
\vdots \\
\left\{199,199 \times 2,199 \times 2^{2}, \ldots 199 \times 2^{i} \cdots\right\}
\end{gathered}
$$

For all numbers $n \in[200], n=2^{k}$. q where q is an odd number. then n goes in the pigeonhole $\left\{q, q \times 2, q \times 2^{2} \cdots\right\}$.

So all 101 pigeons ane in the pigeonholes, by PHP, 2 numbers
$n=q \cdot 2^{k_{1}}, m=q \times 2^{k_{2}}$ are in the same pigeonhole, where $k_{2}>k_{1}$. Then $n \mid m$, since $\frac{m}{n}=2^{k_{2}-k_{1}}$ is a whole integer.
E.X.5.3 Take any subset $A \subseteq[9]$ with $|A|=6$, then A contains two elements $x, y \in A$ such that $x+y=10$.

- The 6 elements of A are the pigeons
- Lonsiden the following pigeonholes:

$$
\{1,9\},\{2,8\},\{3,7\}\{4,6\} .\{5\} .
$$

By PHP, some set contains 2 elements x and y.
since $|\{5\}|=1$. so the pigeonholes. that contains x and y are from the ocher four sets. $\Rightarrow x+y=10$.
E.x.5.4 Suppose 5 points are placed in a equilateral triangle with side length $=1$. Then there are two points whose distance apart is at most $\frac{1}{2}$.

Consider the 5 points to be the pigeons. Split the triangle into 4 smaller triangles A, B, C, D.

By PHP, one of A, B, C and D contains 2 points, x, y,
and the maximum distance within a smaller triangle is $\frac{1}{2}$. so the distance between x and y is at most $\frac{1}{2}$.

Generating functions.

- Denote a sequence $a_{0}, a_{1}, a_{2}, \ldots$ by $\left\{a_{k}\right\}_{k=0}^{\infty}$
- We associate a function

$$
F(x)=\sum_{k=0}^{\infty} a_{k} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots
$$

- $F(x)$ is called the generating function of $\left\{a_{k}\right\}_{k=0}^{\infty}$.

For a fixed $n \geqslant 0$, consider:

E,X,5,5 Considen the sequence $\left\{a_{k}\left\{_{k=0}^{\infty}\right.\right.$ given by $a_{k}=\binom{n}{k}$ for $k=0,1, \ldots, n, a_{k}=0$. for $k \geqslant n$.

By the Binomial theorem, the generation fen is

$$
F(x)=\sum_{k=0}^{\infty} a_{k} x^{k}=\sum_{k=0}^{\infty}\binom{n}{x} 1^{n-k} x^{k}=(1+x)^{n} .
$$

E.x.5.6. Consider $\left\{a_{k}\right\}_{k=0}^{\infty}$ given by

$$
\left\{\begin{array}{l}
a_{k}=1 \text { for } k=0, \ldots, n \\
a_{k}=0 \text { for } k>n
\end{array}\right.
$$

The generation ten is $F(x)=\sum_{k=0}^{\infty} a_{n} x^{k}=1+x+x^{2}+\cdots+x^{n}$

Note the nt $1-x^{n+1}=\left(1+x+\cdots+x^{n}\right)-\left(x+\cdots+x^{n+1}\right)$

$$
\begin{aligned}
& =F(x)-x F(x) \\
& =(1-x) F(x)
\end{aligned}
$$

So $F(x)=\frac{1-x^{n+1}}{1-x}$

Exercise 1 Show that the generating function for $\left\{a_{k}\right\}_{k=0}^{\infty}$ where

$$
\begin{aligned}
a_{k}=\binom{n+k-1}{n-1} & =\binom{n+k-1}{k} \text { is given } b_{y} \\
F(x) & =\frac{1}{(1-x)^{n}}
\end{aligned}
$$

Why use generating tens?

- allows us to use analysis to solve some combinatorial problems
- we will hank at some basic uses only, in this lecture series,

Multiplication: Let $F(x)=\sum_{k=0}^{\infty} a_{k} x^{k}, \quad G(x)=\sum_{k=0}^{\infty} b_{k} x^{k}$, what is the
$k+h$ term of $H(x)=F(x) G(x) ?$
Note tho the $(k+1)$ th term $=h_{k} x^{k}$.
Collection all the x^{k} terms: Take $a_{j} x^{j}: a_{j} x^{j} b_{k-j} x^{k-j}=a_{j} b_{k-j} x^{k}$. So the $k+h$ terming $H(x): \sum_{j=0}^{k} a_{j} b_{k-j} x^{k}$.

E,X.5.7. Use generation functions, find the number of solution t

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=k . \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geqslant 0
\end{array}\right.
$$

Sol Let $\left\{a_{k}\right\}_{k=0}^{\infty},\left\{b_{k}\right\}_{k=0}^{\infty},\left\{c_{k}\right\}_{k=0}^{\infty},\left\{d_{k}\right\}_{k=0}^{\infty},\left\{e_{k}\right\}_{k=0}^{\infty}$ be the number of solutions to

$$
\left\{\begin{array}{l}
x_{1}=k, \\
x_{1} \geqslant 0
\end{array},\left\{\begin{array}{l}
x_{2}=k, \\
x_{2} \geqslant 0
\end{array},\left\{\begin{array}{l}
x_{3}=k, \\
x_{3} \geqslant 0
\end{array}, \begin{array}{l}
x_{k}=k, \\
x_{4} \geqslant 0
\end{array} \quad\left\{\begin{array}{l}
x_{5}=k \\
x_{5} \geqslant 0
\end{array}\right.\right.\right.\right.
$$

respectively, clearly, $\underbrace{a_{k}=b_{k}=c_{e}=d_{k}=e_{k}}_{\text {each element }}=1$ for all $k \geqslant 0$. Now each element.

Let $A(x)=B(x)=C(x)=D(x)=E(x)$ be the generation fiction, then,

$$
A(x)=\sum_{k=0}^{\infty} x^{k}
$$

Wo te that $1=\left(1+x+\cdots+x^{k}+\cdots\right)-\left(x+x^{2}+\cdots+x^{k+1}+\cdots\right)$

$$
\begin{aligned}
& =(1-x) A(x) \\
\Rightarrow A(x) & =\frac{1}{1-x}
\end{aligned}
$$

Now leo $S(x)=A(x) B(x) C(x) D(x) E(x)=\frac{1}{(1-x)^{5}}$, then the k th wefferient of $S(x)$ is the sum oven all solutions to

$$
\begin{aligned}
& x_{1}=k_{1}, x_{2}=k_{2}, \ldots, x_{5}=k_{s} . \\
& \text { sit. } k_{1}+k_{2}+k_{3}+k_{4}+k_{5}=k^{2} .
\end{aligned}
$$

Since $S(x)=\frac{1}{(1-x)^{5}}$, by exercise 1, the k th coefficient B

$$
\binom{n+k-1}{n-1}=\binom{5+k-1}{5-1}=\binom{k+4}{4}
$$

E.x.5.8 (Similar)

How many integer so elutions are there to

$$
x_{1}+x_{2}+x_{3}=k \text {, sit. } 0 \leqslant x_{1} \leq 5, x_{2} \text { even, } x_{3} \text { is a multiple of } 6 \text { ? }
$$

Sol. Let $\left\{a_{k}\right\}_{k=0}^{\infty}$ be that a_{k} is the number of solutions to

$$
\begin{gathered}
x_{1}=k, \quad 0 \leqslant x_{1} \leqslant 5, \quad \text { then. } \\
\left(a_{0}=a_{1}=\cdots=a_{5}=1, a_{n}=0, n \geqslant 6\right) \\
F_{a}(x)=\sum_{k=0}^{\infty} a_{k} x^{k}=1+x+x^{2}+x^{3}+x^{4}+x^{5}=\frac{1-x^{6}}{1-x}
\end{gathered}
$$

Similarly, Let $\left\{b_{k}\right\}_{k=0}^{\infty}$

$$
\begin{gathered}
x_{2}=k, x_{2} \text { even } \\
F_{b}(x)=\sum_{k=0}^{\infty} b_{k} x^{k}=1+x^{2}+x^{4}+\cdots=\sum_{k=0}^{\infty}\left(x^{2}\right)^{k}=\frac{1}{1-x^{2}} .
\end{gathered}
$$

Let $\left\{C_{k}\right\}_{k=0}^{\infty} \ldots$

$$
x_{3}=k, \quad x_{3} \text { is a multiple of } 6 \text {. }
$$

$$
\begin{aligned}
F_{c}(x) & =1+x^{6}+x^{12}+\cdots \\
& =\sum_{k=0}^{\infty}\left(x^{6}\right)^{k}=\frac{1}{1-x^{6}}
\end{aligned}
$$

Leo S_{k} be the number of solutions to the original system, then

$$
\begin{aligned}
& S(x)=\sum_{k=0}^{\infty} S_{k} x^{k}=F_{a}(x) F_{b}(x) F_{c}(x) \\
&=\frac{1-x^{k}}{1-x} \cdot \frac{1}{1-x^{2}} \cdot \frac{1}{1-x^{b}} \\
&=\frac{1}{(1-x)\left(1-x^{2}\right)} \\
&=\frac{1}{(1-x)^{2}(1+x)} \\
& \text { Let } S(x)=\frac{A}{1+x}+\frac{B}{1-x}+\frac{C}{(1-x)^{2}} \\
& \Rightarrow A=\frac{1}{4}, B=\frac{1}{4}, C=\frac{1}{2} . \\
& S_{0} S(x)=\frac{1}{4}\left(\frac{1}{1-(-x)}\right)+\frac{1}{4}\left(\frac{1}{1-x}\right)+\frac{1}{2}\left(\frac{1}{(1-x)^{2}}\right) \\
&=\frac{1}{4} \sum_{k=0}^{\infty}(-x)^{k}+\frac{1}{4} \sum_{k=0}^{\infty} x^{k}+\frac{1}{2} \sum_{k=0}^{\infty}(k+1) x^{k}
\end{aligned}
$$

Therefore, $S_{k}=\frac{(-1)^{k}}{4}+\frac{1}{4}+\frac{1}{2}(k+1)$

Remark. The generation tans we have seen so far are "Lombiration-like" sequence, since they dort grow too fast. There are also "permutation-like" sequences that grow taster, we need to alter the definition

Def 5.9 . For a sequence $\left\{a_{k}\right\}_{k=0}^{\infty}$, define the Exponential generation fiction to be $F(x)=\sum_{k=0}^{\infty} \frac{a_{k}}{k!} x^{k}$.
E.X, 5,10 If $a_{k}=1, k \geqslant 0$, then

$$
F(x)=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=e^{x}
$$

E. $x, 5,11$. Recall $P(n, k)=\frac{n!}{(n-k)!}$. For a fixed n, let $a_{k}=P(n, k)$ for $0 \leq k \leq n$, and $a_{k}=0$. for $k>n$. then the exponential generatiy $\operatorname{ten} 13$

$$
\begin{aligned}
F(x)=\sum_{k=0}^{n} \frac{a_{k}}{k!} x^{k} & =\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} x^{k} \\
& =\sum_{k=0}^{n}\binom{n}{k} x^{k}=(1+x)^{n}
\end{aligned}
$$

(gen tan for $\binom{n}{k}$ and axpgen for for $p(n, k)$).

E,x,5.11. Let $a_{k}=\left\{\begin{array}{ll}0 & \text { keven, } \\ 1 & k \text { odd, }\end{array}\right.$ then

$$
\begin{aligned}
F(x) & =x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \\
& =\frac{1}{2}\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}\right)-\frac{1}{2}\left(1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\cdots\right) \\
& =\frac{1}{2} e^{x}-\frac{1}{2} e^{-x}=\frac{e^{x}-e^{-x}}{2}
\end{aligned}
$$

E.x.5.12 $\quad a_{k}= \begin{cases}1 & \text { keven } \\ 0 & k o d d .\end{cases}$
$F(x)=\frac{e^{x}+e^{-x}}{2}$ (check!)

