F7. Graphs.

Topic 1. Bridge of Könisberg.
In the 18 th century, the Prussian city of Konisberg was divided into for different landmasses by the Pregel river. which are connected by 7 bridges.

- Two bribes each from mainland to knerphof.
- One bridge each from mainland to louse
- One bridge connecting knerphat and louse.

Euler invested of one could give a town through the city traversing all bridges exactly once. In 1736, he showed 173 impossible to find such a route, while laying the foundations of graph theory $刀$. Idea.

- represent landmasses by abstract points (vertices)
- represent bridges by line segments (edges) This makes what we call "multigraph" today:

Def 7.1. A multr-graph is a triple $G=(V, E, r)$ where

- V is a set of vertices
- E is a set of edges.
a $r: E \rightarrow\{(v, y): x, y \in V\}$ absignīj each edge an unordered pair of end porno nodes.

In a word: a graph is a collection of nodes and edges.

Based on this definition, the map can be represented as.

Def 7.2. An Euler walk in an undirected graph is a walk (asequence of alternating vertices and edges) such that each
edge is used exactly once. If such a walk exists, the graphis called traversable.
we will show that our graphic not!
Idea. Call the stanton vertex S and fishing vertex V.
critical observation: every vertex that is not S or V must have an even degree (number of edges unnected.).
why? The only way to pass a vertex is to enter through an edge and exit through another one.

Our graph has 4 vertices $(\geqslant 3)$ of odd degrees, it's not passible to find such a route.

All bridger were bombed in 1944, only 5 of them rebuilt,
Q: Find an Euler walk in the modern day map.

Solve the following problems

1. Budapest

No vertex of odd degree. possiple!
2. Gdansk

2 vertices with odd degrees, possible!
3. Uppsala

possible! Not interesting...

Topic 2 Graph coloring.
A vertex coloring is a way of assigning a color to each vertex, sit two adjacent vertices (Linked by an edge) never have the Same cor.
eng. creation a map of a country.

- It's interesting to know the minimal number of coors we need to colon its vertices. it is called the chromatic number of the graph,

E,X.7.3. Party problem.
There are 12 mathematicians celebration their birthdays in the same week. A, B, C, \ldots, L. There are some people that are inurtel to both parties since they are friends with multiple of them:
eng. In is inured to both Daniel \& Elvin's party

A list of people with common friends:

$$
\begin{cases}A-B, & A-G, \\ B-C, & B-F \\ C-D, & C-K \\ D-E, & D-J \\ E-F, & E-I \\ F-G, \\ G-H . & \\ H-I, H-L \\ I-J \\ J-K \\ K-L\end{cases}
$$

What's the minimal number of time slots for people is have parties?

minimal \# of whens to colon the follow graph:

- Edge : nomen friesels (cannot have the Sane tine slots).
- Assume we can only use 2 woos: red and blue.
- Let A be red.
$\Rightarrow L, B$ must be blue.
$\Rightarrow k$ must be red.
$\Rightarrow C$ must be blue
(but B is already blue)

a possible coloring.
2 13 not enough! we need another colon ton.

Solve the following problem: 5 students want to attend each other's parties.

we need 5 colors because the graph is fully connected. Tho graph is called k_{5}.

One step moe

We cant use leas than 5 colon.

- F and G do not requne more colors. (only connected to 2).

Topic 3. Shannon switching game.

Consider a game played on a graph with two types of vertices.
A, B. Each edge can be eichen colored or removed. There are two players. Short, and Cut, who take turns to move.

- On cut's turn, they delete a non-colored edge
- On shouts turn, they colon a existing edge

Cutwins of A and B are no longer connected
Shout wins of a colored path is connected between A and B.
egg. Who will win?
1)

whoever goes first
ii)
 S hort
iii)

In this case, short always wing even if cut has the first turn!

- A spaningtree in a graph is a selection of edges where the edges are all wonnected and there are no cycles.
- Short AlWAYs wins if and only if there are sub-trees

S, T. untaing bock A and B bunt have any common edges,

- Strategy; whenever cut deletes an edge, find an edge in the ocher tree to color such that it fix the broken tree.

What happens otherwise? Either Cut has the winning strategy on the "first mover" has the winnay strategy.

Exerene. Chose yam character and design your own graph sit. You have the winning strategy.

