Sequential Testing and Quickest Detection for a Multi-dimensional Wiener Process

Yuqiong Wang | *yuqiong.wang@math.uu.se* Joint work with Erik Ekström

Department of Mathematics Uppsala University

January 24, 2020

Introduction	Extension to Higher Dimensions	Main Properties	Examples	Summary
● 0 00				

Another Look at the 1D case

■ let *Y* be a continuous-time Markov chain with state space {0,1} and transition matrix

$$Q = \begin{pmatrix} -\lambda & \lambda \\ 0 & 0 \end{pmatrix}$$

where $\lambda \ge 0$ is a known constant.

•
$$\mathbb{P}(Y_0 = 1) = \pi$$
 and $\mathbb{P}(Y_0 = 0) = 1 - \pi$ for $\pi \in [0, 1]$.

let X be

$$X_t = \int_0^t Y_s \, ds + W_t,$$

where W is a 1D standard BM independent of Y.

-Can then reformulate the classical problems of sequential testing and Bayesian quickest detection.

Introduction 0000	Extension to Higher Dimensions	Main Properties	Examples 000	Summary 00

Another Look at the 1D case

Sequential Testing

Quickest Detection

- $1 \quad \lambda = 0, \ Y_t = Y_0,$
- 2 Want to determine Y_0 .
- 3 i.e. Consider

 $\inf_{\tau,d} \left\{ \mathbb{P}(d \neq Y_0) + c\mathbb{E}[\tau] \right\},\$

1 $\lambda > 0$

- 2 Want to determine the jump time of Y_t .
- 3 i.e. Consider

$$\inf_{\tau} \left\{ \mathbb{P}(Y_{\tau} = 0) + c \mathbb{E}\left[\int_{0}^{\tau} Y_{t} dt \right] \right\}$$

where τ 's are \mathscr{F}^X -stopping times and $d \in \{0,1\}, \mathscr{F}^X_{\tau}$ -measurable.

Reduction to Optimal Stopping

- Define the conditional probability process $\Pi_t := \mathbb{E}[Y_t | \mathscr{F}_t]$,
- Both problems can be written as:

$$\inf_{\tau} \mathbb{E}\left[g(\Pi_{\tau}) + \int_{0}^{\tau} h(\Pi_{s}) \, ds\right]$$

■ g and h are certain penalty functions:

- - Testing: $g(\pi) = \pi \wedge (1 \pi)$ and $h(\pi) = c$,
- - Detection: $g(\pi) = (1 \pi)$ and $h(\pi) = c\pi$.

(5) Jan. 15, 2019 Sequential Testing and Quickest Detection for a Multi-dimensional Wiener Process

Introduction	Extension to Higher Dimensions	Main Properties	Examples	Summary 00
-				

The Higher-dimensional Version

- Observe: *n*-dimensional BM X_t with drift
- Drift of X_i is modelded by Y^i (mutually independent) with state space $\{0,1\}$ and transition matrix

$$Q^i = \begin{pmatrix} -\lambda^i & \lambda^i \\ 0 & 0 \end{pmatrix},$$

where $\lambda^{i} \ge 0$ **P** $(Y_{0} = 1) = \pi_{i} \in [0, 1]$ **(** $X_{t})_{t \ge 0} = (X_{t}^{1}, X_{t}^{2}, ..., X_{t}^{n})_{t \ge 0}$ is then given by $dX_{t}^{i} = Y_{t}^{i} dt + dW_{t}^{i}$

- W^i, \ldots, W^n are independent BMs, Y and W are independent.
- Introduce $\Pi = (\Pi^1, \dots \Pi^n)$:

$$\Pi_t^i := \mathbb{E}[Y_t^i | \mathscr{F}_t]$$

Introduction	Extension to Higher Dimensions	Main Properties	Examples	Summary		
0000	o●oooo		000	00		

The Higher-dimensional Version

We study a family of problems which can be written as:

$$\inf_{\tau} \mathbb{E}\left[g(\Pi_{\tau}) + \int_0^{\tau} h(\Pi_t) \, dt\right]$$

for $g, h : [0, 1]^n \to [0, \infty)$ of the process Π .

Assumptions

- 3 g, h Lipschitz continuous
- 4 g,h concave in each direction separately.

8 Jan.15, 2019 Sequential Testing and Quickest Detection for a Multi-dimensional Wiener Process

Introduction	Extension to Higher Dimensions	Main Properties	Examples 000	Summary 00

Some Formulations-Sequential Testing

Assume $\lambda_i = 0$ and h = c for some c > 0.

SQ1: Penalizing each faulty decision equally

$$\inf_{\tau,d} \left\{ \sum_{i=1}^{n} \mathbb{P}(d_i \neq Y_0^i) + c\mathbb{E}[\tau] \right\}$$
$$g(\pi) = \sum_{i=1}^{n} \pi_i \wedge (1 - \pi_i)$$

SQ2: Penalized for at least one faulty decision

$$\inf_{\tau,d} \left\{ \mathbb{P}(\{d_i \neq Y_0^i \text{ for some } i\}) + c\mathbb{E}[\tau] \right\}, \\ g(\pi) = 1 - \prod_{i=1}^n (1 - \pi_i \wedge (1 - \pi_i))$$

SQ3: Determine one drift *d* and point out its coordinates \tilde{d} $\inf_{\tau,d,\tilde{d}} \left\{ \mathbb{P}(d \neq Y_0^{\tilde{d}}) + c\mathbb{E}[\tau] \right\}, \ g(\pi) = \wedge_{i=1}^n \pi_i \wedge (1 - \pi_i)$

9 Jan. 15, 2019 Sequential Testing and Quickest Detection for a Multi-dimensional Wiener Process

Introduction	Extension to Higher Dimensions	Main Properties	Examples 000	Summary 00

Some Formulations-Sequential Testing

SQ4: With cost reduction, n = 2

$$\inf_{\substack{\tau_1, \tau_2, d_1, d_2}} \{ \mathbb{P}(d_1 \neq Y_0^1) + \mathbb{P}(d_2 \neq Y_0^2) + \\ c \mathbb{E}[\tau_1 \wedge \tau_2 + (1 - \lambda)(\tau_1 \vee \tau_2 - \tau_1 \wedge \tau_2)] \}$$

Can be reduced to one stopping rule
g(π) = ∧²_{i=1}(π_i ∧ (1 − π_i) + V_{c(1−λ)}π_{3−i}) where V_{c(1−λ} is the value function of the 1D testing problem with cost c(1 − λ).
when λ = 0 same as SQ1, when λ = 1 same as SQ3.

(10) Jan.15, 2019 | Sequential Testing and Quickest Detection for a Multi-dimensional Wiener Process

Introduction	Extension to Higher Dimensions	Main Properties	Summary 00

Some Formulations-Quickest Detection

QD1: The first changing point

$$\inf_{\tau} \left\{ \mathbb{P}\left(\max_{1 \le i \le n} Y_{\tau}^{i} = 0 \right) + c \mathbb{E}\left[\int_{0}^{\tau} \max_{1 \le i \le n} Y_{t}^{i} dt \right] \right\}$$
$$g(\pi) = \prod_{i=1}^{n} (1 - \pi_{i}), \quad h(\pi) = c(1 - \prod_{i=1}^{n} (1 - \pi_{i}))$$

QD2: The *last* changing point

$$\inf_{\tau} \left\{ \mathbb{P}\left(\min_{1 \le i \le n} Y_{\tau}^{i} = 0\right) + c \mathbb{E}\left[\int_{0}^{\tau} \min_{1 \le i \le n} Y_{t}^{i} dt\right] \right\}$$
$$g(\pi) = 1 - \prod_{i=1}^{n} \pi_{i}, \quad h(\pi) = c \prod_{i=1}^{n} \pi_{i}$$

QD3: Determine one change point and point out its coordinates d

$$\inf_{\tau,\tilde{\sigma}} \left\{ \mathbb{P}(Y_{\tau}^{\tilde{\sigma}} = 0) + c\mathbb{E}\left[\int_{0}^{\tau} \sum_{i=1}^{n} Y_{t}^{i} dt\right] \right\},\$$
$$g(\pi) = \wedge_{i=1}^{n} (1 - \pi_{i}), \quad h(\pi) = c \sum_{i=1}^{n} \pi_{i}$$

11 Jan.15, 2019 Sequential Testing and Quickest Detection for a Multi-dimensional Wiener Process

Main D	roportios			
Introduction	Extension to Higher Dimensions	Main Properties	Examples	Summary
0000		●○	000	00

Unilateral Concavity

The function $\pi_i \mapsto V(\pi)$ is concave in each variable separately (i.e. $\pi_i \mapsto V(\pi)$ is concave for each i = 1, ..., n).

Some Other Results

- 1 The cost function V is Lipschitz continuous.
- **2** The set $\{\mathscr{L}g + h < 0\}$ is contained in \mathscr{C} .
- 3 The kinks in the g function are contained in \mathscr{C} .

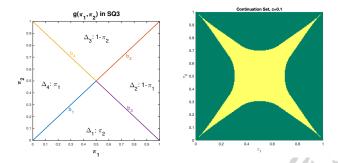
13 Jan. 15, 2019 Sequential Testing and Quickest Detection for a Multi-dimensional Wiener Process

Introduction	Extension to Higher Dimensions	Main Properties	Examples ooo	Summary 00

SQ3: Testing with Pointing the Direction

$$1 \quad g(\pi) = \wedge_{i=1}^n \pi_i \wedge (1 - \pi_i)$$

- 2 The diagonals are contained in \mathscr{C}
- 3 The square $[A_*, 1 A_*] \times [A_*, 1 A_*]$ is contained in the continuation region.



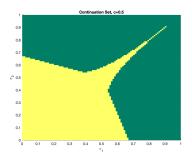
15 Jan. 15, 2019 | Sequential Testing and Quickest Detection for a Multi-dimensional Wiener Process

Introduction	Extension 000000	to Higher Dimensions	Main Properties	Examples ○○●	Summary 00

QD3: Detection with Pointing out the Direction

$$1 \quad g(\pi) = 1 - \pi_1 \vee \pi_2$$

- **2** The diagonal $\{\pi_1 = \pi_2\}$ is contained in \mathscr{C} ,
- 3 One can find a crude upper bound for \mathscr{C} : $\pi_2 < \frac{\lambda}{c} (\frac{\lambda}{c} + 1)\pi_1$,
- 4 By connecting with the 1D problem, one can show that the stopping region intersects π_1 axis at some $\exists C^* \in [\frac{\lambda}{\lambda+c}, 1)$.



Introduction 0000	Extension to Higher Dimensions	Main Properties	Examples 000	Summary ●○		
Summary						

- Reformulate the 1D testing and detection problems as one,
- Extend it into a family of *multi-dimensional* stopping problems with *one* stopping rule and *independence* in the driving Brownian motions,
- Prove unilateral concavity and some other general properties,
- **Give some formulations** in this family possibly with applications.

18 Jan. 15, 2019 Sequential Testing and Quickest Detection for a Multi-dimensional Wiener Process