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Motivation

Testing unknown parameter with a Bernoulli prior:
(Shiryaev, 1978)

Observe a sequence of i.i.d. random variables distributed
with density pθ (x)

θ ∈ {0,1} (Bernoulli prior)
Can formulate stopping problem in terms of Π, the
posterior probability process (Markovian)
V (π) = infτ Eπ [Πτ ∧ (1−Πτ ) + cτ]

=⇒ V (π) is concave
=⇒ There exists constant stopping boundaries
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Motivation

Testing the unknown drift of a Brownian motion: (Ekström
and Vaicenavicius, 2015)

dXt = Bdt + dWt , B is a r.v.
B has a general prior µ

V (0,π) = infτ Eπ [Πτ ∧ (1−Πτ ) + cτ]

=⇒ V (π) is concave
=⇒ Volatility of Π is non-increasing in time
=⇒ There exists monotone stopping boundaries
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Motivation

Questions
Can we test other distributions in discrete time? e.g.
unknown variance of a Gaussian?
Does the problem exhibit similar structural properties?
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Problem Setting

The tester observes X1,X2, ... sequentially with cost c at
each step
Xk ’s are drawn from a one-parameter exponential family
depending on r.v. Θ

Conditioning on Θ = u, Xk ’s are independent, and

P(Xk ∈ A|Θ = u) =
∫

A
pu(x)ν(dx)

where
pu(x) := exp{ux−B(u)},

and ν is a σ -finite measure on R.
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Bayesian set-up

µ: prior of the unknown parameter Θ, denote the support
of µ by S
Want to test:

H0 : Θ≤ θ0,

H1 : Θ > θ0,

Let d = i represents Hi is accepted,
Define the cost function

V := inf
τ∈T

inf
d∈Dτ

{P(d = 1,Θ≤ θ0) +P(d = 0,Θ > θ0) + cE[τ]}
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Reformulation in the π coordinate

Define the posterior probability process Π

Πn := P(Θ > θ0|F X
n ),

with Π0 = π,
Given τ ∈T ,

d =

{
0 if Πτ ≤ 1/2
1 if Πτ > 1/2,

Consequently,

V = inf
τ∈T

E [Πτ ∧ (1−Πτ ) + cτ] ,
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Properties of the Π process

At time n, given X1 = x1, . . . ,Xn = xn, by independence,

P(Θ > θ0|X1 = x1, . . . ,Xn = xn) =

∫
S+ ∏

n
i=1 pu(xi )µ(du)∫

S ∏
n
i=1 pu(xi )µ(du)

=

∫
S+ exp{u ∑

n
i=1 xi −nB(u)}µ(du)∫

S exp{u ∑
n
i=1 xi −nB(u)}µ(du)

.

Denoting Yn := ∑
n
i=1 Xi :

Πn = q(n,Yn).

where

q(n,y) :=

∫
S+ euy−nB(u)µ(du)∫
S euy−nB(u)µ(du)

.

11 Jun. 30, 2021 | Bayesian sequential hypothesis testing in discrete time



Introduction Markovian Embedding Concentration of the posterior distribution Is the value function monotone in time?

Parameterization of the posterior distribution

Denote by

µn,y (du) :=
euy−nB(u)µ(du)∫
S euy−nB(u)µ(du)

the posterior distribution of Θ at time n conditional on Yn = y .

Lemma
The function y 7→ q(n,y) : R→ (0,1) is an increasing bijection
for each fixed n.

Remark
Π is a Markov process

y can take any value in R

At time n, knowing y gives all the information of the posterior.

Refer the set {(n,y(n,π)),n ≥ 0} as the π−level curve.
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Properties of the value function

The optimal stopping problem can be written as

V (n,π) = inf
τ∈T

En,π [Πτ+n∧ (1−Πτ+n) + cτ]. (1)

Lemma
The value function V (n,π) satisfies

V (n−1,π) = min{π ∧ (1−π),c +En−1,π [V (n,Πn)]}.

Lemma

Let f : [0,1]→ [0,∞) be a concave function. Then
π 7→ En,π [f (Πn+1)] is concave on (0,1).

Proof. By implicit differentiation.
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Concavity and its consequence

Main Theorem (1)
The function π 7→ V (n,π) is concave for each fixed n ≥ 0.

Remark. V can be extended for every π ∈ [0,1] and the concavity is
preserved.
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Concavity and its consequence

Introduce now

The continuation region C :

C := {(n,π) ∈ N0× [0,1] : V (n,π) < π ∧ (1−π)},

The stopping region D by

D := {(n,π) ∈ N0× [0,1] : V (n,π) = π ∧ (1−π)}.

The stopping time

τ
∗ := inf{k ≥ 0 : (n + k ,Πn+k ) ∈D}

is an optimal strategy.

Remark
The continuation region is of the form (b1(n),b2(n))

The concavity result is connected with time-monotonicity of the
value function
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The posterior distribution gradually squeezes in

Main Theorem (2)
If a < θ0 < b, then

n 7→ Pn,π(Θ≤ a) & n 7→ Pn,π(Θ > b)

are decreasing.

Remark
As a consequence, let 0 < π1 < π2 < 1. Then

n 7→ y(n,π2)−y(n,π1)

is non-decreasing.
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Conditions for monotonicity in time

Assumption

For any π ∈ (0,1) and n ≥m ≥ 0, the random variable
Πm+1|{Πm = π} dominates Πn+1|{Πn = π} in convex order.

Theorem
Assume the above holds. Then V (n,π) is non-decreasing in n,
and the boundaries b1 and b2 are thus non-decreasing and
non-increasing, respectively.

But is the assumption correct?
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One sufficient condition

If there exists a π0, such that Πn+1 is more concentrated around it
than Πm+1, then we are done.

Main Theorem (3 )

Observations are continuously distributed with density h(x)pu(x)
s.t. I := {h > 0} is an interval.

h(x)pu(x) is increasing in x on I, and S+ is a singleton

then V (n,π) is non-decreasing in n.

Remark. The following cases also go through

The symmetric case when h(x)pu(x) is decreasing in x on I, and
S− is a singleton.

When I := {h > 0} is a union of disjoint intervals.
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Examples of Main theorem 3

Example 1. (Exponential observations)

h(x)pu(x) =

{
exp{ux + logu} x < 0
0 x ≥ 0

Example 2. (Gaussian observations with unknown
variance)

h(x)pu(x) =

{
2√
−πx exp

{
ux + 1

2 logu
}

x < 0
0 x ≥ 0
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Does it hold for other distributions?

For arbitrary priors:

Example 3. (Gaussian observations with unknown mean)

h(x)pu(x) =
1√
2πσ

e−
x2
2 exp{ux−B(u)}.

Time-monotonicity follows from the continuous case.

Example 4. (Bernoulli observations)

h(x)pû(x) = exp{ûx− log(1 + û)},

Convex order of Πn can be shown.

Example 5. (Binomial observations)
Can be regarded as modification of the Bernoulli case.
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Further discussion

Conjecture
The function V (n,π) is non-decreasing in n.
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Questions and suggestions

Thank you!
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