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Motivation

Testing unknown parameter with a Bernoulli prior:
(Shiryaev, 1978)

m Observe a sequence of i.i.d. random variables distributed
with density pg(x)

m 6 € {0,1} (Bernoulli prior)

m Can formulate stopping problem in terms of 1, the
posterior probability process (Markovian)

m — V(x) is concave
m — There exists constant stopping boundaries
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Motivation

Testing the unknown drift of a Brownian motion: (Ekstrom
and Vaicenavicius, 2015)

m dX; = Bdf+dW;, Bis ar.v.

m B has a general prior u

V(0,7) = infE[M: A(1—N;)+cT]
— V/(m) is concave

= Volatility of I is non-increasing in time
— There exists monotone stopping boundaries
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Motivation

Questions

m Can we test other distributions in discrete time? e.g.
unknown variance of a Gaussian?

m Does the problem exhibit similar structural properties?
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Problem Setting

m The tester observes Xi, Xo, ... sequentially with cost ¢ at
each step

m Xj’s are drawn from a one-parameter exponential family
dependingonr.v. ©

m Conditioning on © = u, X’s are independent, and
P(Xj € Al© = u) = /Apu(x)v(dx)

where
pu(x) :=exp{ux — B(u)},
and v is a o-finite measure on R.
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Bayesian set-up

m u: prior of the unknown parameter ©, denote the support
of uby S
m Want to test:
HO . 0 < 90,
Hy: ©> 6o,

m Let d =i represents H; is accepted,
m Define the cost function

V:=inf inf {P(d=1,0<6y)+P(d=0,0> 6)+cE[7]}
1€ deg”
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Reformulation in the 7 coordinate

m Define the posterior probability process 1
My :=P(O > 6|.7Y),

with Mo =m,
m Givente .7,

0 ifM,<1/2
1 ifn.>1/2,

m Consequently,

€T
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Properties of the 1 process

m Attime n, given Xj = xq,..., X, = xp, by independence,

Jo+ TTiL41 Pu(Xi)u(du)
JsIT 4 pu(Xi)u(du)
_ Jsrexp{uXiq xi— nB(u)}u(du)

]P(@>60|X1:X1,... Xn = Xn)

Jsexp{uEiLy xi—nB(u)}u(du) -

m Denoting Y, :=Y7 { X;
My = Q(n» Yn)~
where

uy—nB(u a
S e
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Parameterization of the posterior distribution

Denote by

euyan(u)‘u(du)
Hny(du) := [ €8 1 (du)
the posterior distribution of © at time n conditional on Y, =y.
Lemma

The function y — q(n,y) : R — (0,1) is an increasing bijection
for each fixed n.

Remark
m [1 is a Markov process

m y can take any value in R

m At time n, knowing y gives all the information of the posterior.

m Refer the set {(n,y(n,)),n > 0} as the t—level curve.
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Properties of the value function

The optimal stopping problem can be written as

V(n,ﬂ) :Tigefq.En~n[rlf+n/\(1 _I_I‘L'Jrn)_'_cf]. (1)

Lemma

The value function V(n, ) satisfies

V(n—1,7) = min{m A (1= 7),c+Ep_1 £[V(n,M,)]}.

Lemma

Letf:[0,1] — [0,0) be a concave function. Then
7 — Enx[f(Mn11)] is concave on (0,1).

Proof. By implicit differentiation.
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Concavity and its consequence

Main Theorem (1)
The function = — V(n, ) is concave for each fixed n > 0.

Remark. V can be extended for every & € [0,1] and the concavity is
preserved.
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Concavity and its consequence

Introduce now
m The continuation region %:
% :={(n,m) eNgx[0,1]: V(n,m) < A(1—m7)},
m The stopping region 2 by
2 :={(n,wr) eNg x[0,1]: V(n,m) =nA(1—-7)}.
The stopping time
" :=inf{k>0:(n+k,Mpk) € 2}
is an optimal strategy.

m The continuation region is of the form (by(n), b2(n))

m The concavity result is connected with time-monotonicity of the
value function
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Concentration of the posterior distribution
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The posterior distribution gradually squeezes in

Main Theorem (2)
Ifa< 6y < b, then

n—Pp(0<a) & n—P,(©>Db)

are decreasing.

As a consequence, let0 < my < mo < 1. Then

n’—>y(n,7'f2)—y(n77l,'1)

is non-decreasing.
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Conditions for monotonicity in time

Assumption

For any n € (0,1) and n> m > 0, the random variable
Nmy1{Nm = 7} dominates N, 1|{M, = r} in convex order.

Theorem

Assume the above holds. Then V(n, r) is non-decreasing in n,
and the boundaries by and b, are thus non-decreasing and
non-increasing, respectively.

But is the assumption correct?
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One sufficient condition

If there exists a mp, such that M, 1 is more concentrated around it
than Mg, 1, then we are done.

Main Theorem (3 )

m Observations are continuously distributed with density h(x)pu(x)
s.t. I:=={h> 0} is an interval.

m h(x)py(x) is increasing in x on I, and S* is a singleton

then V(n, ) is non-decreasing in n.

Remark. The following cases also go through

m The symmetric case when h(x)py(x) is decreasing in x on /, and
S~ is a singleton.

m When /:= {h > 0} is a union of disjoint intervals.
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Examples of Main theorem 3

Example 1. (Exponential observations)

| exp{ux+logu} x<O0
PR ={ 5 e
Example 2. (Gaussian observations with unknown

variance)

2_exp{ux+JSlogul x<0
T I e
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Does it hold for other distributions?

For arbitrary priors:
m Example 3. (Gaussian observations with unknown mean)

2

h(x)pu(x) = e 2 exp{ux— B(u)}.

1
V2rno
Time-monotonicity follows from the continuous case.
m Example 4. (Bernoulli observations)
h(x)py(x) = exp{ix —log(1+ U)},
Convex order of M, can be shown.

m Example 5. (Binomial observations)
Can be regarded as modification of the Bernoulli case.
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Further discussion

The function V(n, ) is non-decreasing in n.
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Questions and suggestions

Thank you!
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