Asymmetric Dynkin ghost games with consolation

Yuqiong Wang | yuqiong.wang@math.uu.se In working progress with Erik Ekström

Department of Mathematics
Uppsala University

March 23, 2023

Outline

2) Our ghost game

(3) Examples

Ghost games with preemption

■ Consider a two-player non-zero sum Dynkin game (De Anglis and Ekström, 2020)

Ghost games with preemption

■ Consider a two-player non-zero sum Dynkin game (De Anglis and Ekström, 2020)

- Key feature: each player is uncertain about the existence of a competitor.

$$
\theta_{i}=\text { "Player i has competition" }
$$

Ghost games with preemption

- Consider a two-player non-zero sum Dynkin game (De Anglis and Ekström, 2020)
■ Key feature: each player is uncertain about the existence of a competitor.

$$
\theta_{i}=\text { "Player i has competition" }
$$

■ Preemption: the first one to stop at time t gets $g\left(X_{t}\right)$, the second gets nothing

Ghost games with preemption

■ Consider a two-player non-zero sum Dynkin game (De Anglis and Ekström, 2020)
■ Key feature: each player is uncertain about the existence of a competitor.

$$
\theta_{i}=\text { "Player i has competition" }
$$

■ Preemption: the first one to stop at time t gets $g\left(X_{t}\right)$, the second gets nothing
■ Assume that Player 1 stops at τ, Player 2 stops at γ, their rewards:

$$
\begin{aligned}
& R_{1}(\tau, \gamma):=\left(g\left(X_{\tau}\right) 1_{\tau \leq \hat{\gamma}}\right) 1_{\tau<\infty}, \\
& R_{2}(\tau, \gamma):=\left(g\left(X_{\gamma}\right) 1_{\gamma<\hat{\tau}}\right) 1_{\gamma<\infty}
\end{aligned}
$$

Ghost games with preemption

- Consider a two-player non-zero sum Dynkin game (De Anglis and Ekström, 2020)
■ Key feature: each player is uncertain about the existence of a competitor.

$$
\theta_{i}=\text { "Player i has competition" }
$$

■ Preemption: the first one to stop at time t gets $g\left(X_{t}\right)$, the second gets nothing
■ Assume that Player 1 stops at τ, Player 2 stops at γ, their rewards:

$$
\begin{aligned}
& R_{1}(\tau, \gamma):=\left(g\left(X_{\tau}\right) 1_{\tau \leq \hat{\gamma}}\right) 1_{\tau<\infty}, \\
& R_{2}(\tau, \gamma):=\left(g\left(X_{\gamma}\right) 1_{\gamma<\hat{\tau}}\right) 1_{\gamma<\infty}
\end{aligned}
$$

■ where

$$
\begin{aligned}
& \hat{\gamma}=\gamma 1_{\theta_{1}=1}+\infty 1_{\theta_{1}=0} \\
& \hat{\tau}=\tau 1_{\theta_{2}=1}+\infty 1_{\theta_{2}=0}
\end{aligned}
$$

Ghost games with preemption

- At the start of the game, each player estimates their probability of competition:

$$
\mathbb{P}\left(\theta_{i}=1\right)=p_{i}
$$

Then they adjust their belief processes $\Pi_{t}^{i}=\mathbb{P}\left(\theta_{i}=1 \mid \mathscr{F}_{t}^{X}, \hat{\gamma}>t\right)$ by observing:

Ghost games with preemption

- At the start of the game, each player estimates their probability of competition:

$$
\mathbb{P}\left(\theta_{i}=1\right)=p_{i}
$$

Then they adjust their belief processes $\Pi_{t}^{i}=\mathbb{P}\left(\theta_{i}=1 \mid \mathscr{F}_{t}^{X}, \hat{\gamma}>t\right)$ by observing:

- the underlying X,
- the lack of action of their competitor.

Ghost games with preemption

- At the start of the game, each player estimates their probability of competition:

$$
\mathbb{P}\left(\theta_{i}=1\right)=p_{i}
$$

Then they adjust their belief processes $\Pi_{t}^{i}=\mathbb{P}\left(\theta_{i}=1 \mid \mathscr{F}_{t}^{X}, \hat{\gamma}>t\right)$ by observing:

- the underlying X,
- the lack of action of their competitor.

■ Note that we can "fool" our competitor,
■ A pure-strategy equilibrium wouldn't exist!

Ghost games with preemption

- At the start of the game, each player estimates their probability of competition:

$$
\mathbb{P}\left(\theta_{i}=1\right)=p_{i}
$$

Then they adjust their belief processes $\Pi_{t}^{i}=\mathbb{P}\left(\theta_{i}=1 \mid \mathscr{F}_{t}^{X}, \hat{\gamma}>t\right)$ by observing:

- the underlying X,
- the lack of action of their competitor.

■ Note that we can "fool" our competitor,
■ A pure-strategy equilibrium wouldn't exist!
This means τ, γ should be randomised stopping times:

$$
\begin{aligned}
& \tau=\inf \left\{t \geq 0: \Gamma_{t}^{1} \geq U_{1}\right\} \\
& \gamma=\inf \left\{t \geq 0: \Gamma_{t}^{2} \geq U_{2}\right\}
\end{aligned}
$$

where $U_{1}, U_{2} \sim \operatorname{Unif}(0,1)$.

Ghost games with preemption

Furthermore, Π_{t}^{i} is a function of Γ_{t}^{3-i} :

$$
\Pi_{t}^{i}=\frac{p_{i}\left(1-\Gamma_{t}^{3-i}\right)}{1-p_{i} \Gamma_{t}^{3-i}}
$$

Ghost games with preemption

Furthermore, Π_{t}^{i} is a function of Γ_{t}^{3-i} :

$$
\Pi_{t}^{i}=\frac{p_{i}\left(1-\Gamma_{t}^{3-i}\right)}{1-p_{i} \Gamma_{t}^{3-i}}
$$

Wlog, assume $p_{1}<p_{2}$.

Ghost games with preemption

Furthermore, Π_{t}^{i} is a function of Γ_{t}^{3-i} :

$$
\Pi_{t}^{i}=\frac{p_{i}\left(1-\Gamma_{t}^{3-i}\right)}{1-p_{i} \Gamma_{t}^{3-i}}
$$

Wlog, assume $p_{1}<p_{2}$.

- The players seek to maximise their discounted expected payoff:

$$
\begin{aligned}
& J_{1}\left(\tau, \gamma, p_{1}, x\right):=\mathbb{E}_{x}\left[e^{-r \tau} R_{1}(\tau, \gamma)\right], \\
& J_{2}\left(\tau, \gamma, p_{2}, x\right):=\mathbb{E}_{x}\left[e^{-r \gamma} R_{1}(\tau, \gamma)\right] .
\end{aligned}
$$

Ghost games with preemption

Furthermore, Π_{t}^{i} is a function of Γ_{t}^{3-i} :

$$
\Pi_{t}^{i}=\frac{p_{i}\left(1-\Gamma_{t}^{3-i}\right)}{1-p_{i} \Gamma_{t}^{3-i}}
$$

Wlog, assume $p_{1}<p_{2}$.

- The players seek to maximise their discounted expected payoff:

$$
\begin{aligned}
& J_{1}\left(\tau, \gamma, p_{1}, x\right):=\mathbb{E}_{x}\left[e^{-r \tau} R_{1}(\tau, \gamma)\right], \\
& J_{2}\left(\tau, \gamma, p_{2}, x\right):=\mathbb{E}_{x}\left[e^{-r \gamma} R_{1}(\tau, \gamma)\right] .
\end{aligned}
$$

- The pair $\left(\tau^{*}, \gamma^{*}\right)$ is a Nash Equilibrium if

$$
\begin{aligned}
& J_{1}\left(\tau, \gamma^{*}, p_{1}, x\right) \leq J_{1}\left(\tau^{*}, \gamma^{*}, p_{1}, x\right), \\
& J_{2}\left(\tau^{*}, \gamma, p_{2}, x\right) \leq J_{2}\left(\tau^{*}, \gamma^{*}, p_{2}, x\right) .
\end{aligned}
$$

Ghost games with preemption

Furthermore, Π_{t}^{i} is a function of Γ_{t}^{3-i} :

$$
\Pi_{t}^{i}=\frac{p_{i}\left(1-\Gamma_{t}^{3-i}\right)}{1-p_{i} \Gamma_{t}^{3-i}}
$$

Wlog, assume $p_{1}<p_{2}$.

- The players seek to maximise their discounted expected payoff:

$$
\begin{aligned}
& J_{1}\left(\tau, \gamma, p_{1}, x\right):=\mathbb{E}_{x}\left[e^{-r \tau} R_{1}(\tau, \gamma)\right], \\
& J_{2}\left(\tau, \gamma, p_{2}, x\right):=\mathbb{E}_{x}\left[e^{-r \gamma} R_{1}(\tau, \gamma)\right] .
\end{aligned}
$$

- The pair $\left(\tau^{*}, \gamma^{*}\right)$ is a Nash Equilibrium if

$$
\begin{aligned}
& J_{1}\left(\tau, \gamma^{*}, p_{1}, x\right) \leq J_{1}\left(\tau^{*}, \gamma^{*}, p_{1}, x\right), \\
& J_{2}\left(\tau^{*}, \gamma, p_{2}, x\right) \leq J_{2}\left(\tau^{*}, \gamma^{*}, p_{2}, x\right) .
\end{aligned}
$$

Define the maximised value as

$$
u_{i}\left(p_{i}, x\right):=J_{i}\left(\tau^{*}, \gamma^{*}, p_{1}, x\right) .
$$

Ghost games with preemption

Some results they found:

Ghost games with preemption

Some results they found:
- A Nash Equilibrium exits

Ghost games with preemption

Some results they found:
■ A Nash Equilibrium exits
■ $d \Gamma_{t}^{1, *}=\frac{p_{1}}{p_{2}} d \Gamma_{t}^{2, *}$

Ghost games with preemption

Some results they found:

- A Nash Equilibrium exits

■ $d \Gamma_{t}^{1, *}=\frac{p_{1}}{p_{2}} d \Gamma_{t}^{2, *}$

- $u_{1}\left(p_{1}, x\right)=u_{2}\left(p_{2}, x\right)=\left(1-p_{1}\right) V^{g}(x)$,
where V^{g} is the "American value" of a single player.

Ghost games with preemption

Some results they found:

- A Nash Equilibrium exits

■ $d \Gamma_{t}^{1, *}=\frac{p_{1}}{p_{2}} d \Gamma_{t}^{2, *}$

- $u_{1}\left(p_{1}, x\right)=u_{2}\left(p_{2}, x\right)=\left(1-p_{1}\right) V^{g}(x)$,
where V^{g} is the "American value" of a single player.
How does the process $\left(X, \Pi^{i}\right)$ behave?

Ghost games with preemption

Some results they found:

- A Nash Equilibrium exits

■ $d \Gamma_{t}^{1, *}=\frac{p_{1}}{p_{2}} d \Gamma_{t}^{2, *}$

- $u_{1}\left(p_{1}, x\right)=u_{2}\left(p_{2}, x\right)=\left(1-p_{1}\right) V^{g}(x)$,
where V^{g} is the "American value" of a single player.
How does the process $\left(X, \Pi^{i}\right)$ behave?
■ Getting pushed along the stopping boundary
■ Jump to 0 after the competitor is revealed.

Outline

(2) Our ghost game

(3) Examples

Our generalisation

We generalise this game in two aspects:

Our generalisation

We generalise this game in two aspects:

- asymmetry in the immediate payoff g,

Our generalisation

We generalise this game in two aspects:

- asymmetry in the immediate payoff g,
- possibility of consolation prize for the late stopper.

Our generalisation

■ Let the underlying X be a continuous strong Markov process,

Our generalisation

Introduction

Our ghost game

Examples

■ Let the underlying X be a continuous strong Markov process,
■ Assume $g_{i}, h_{i}: \mathbb{R} \rightarrow[0, \infty), i=1,2$, are given continuous functions with $g_{i} \geq h_{i}$
■ Denote $V^{g_{i}}(x), V^{h_{i}}(x)$ as the "American values",

Introduction

Our ghost game

Examples

Our generalisation

■ Let the underlying X be a continuous strong Markov process,
\square Assume $g_{i}, h_{i}: \mathbb{R} \rightarrow[0, \infty), i=1,2$, are given continuous functions with $g_{i} \geq h_{i}$
■ Denote $V^{g_{i}}(x), V^{h_{i}}(x)$ as the "American values",

- The expected discounted payoff:

$$
\begin{aligned}
& J_{1}\left(x ; \gamma_{1}, \gamma_{2}\right):=\mathbb{E}_{x}\left[e^{-r \gamma_{1}} g_{1}\left(X_{\gamma_{1}}\right) 1_{\left\{\gamma_{1} \leq \hat{\gamma}_{2}\right\}}+e^{-r \gamma_{2}} V^{h_{1}}\left(X_{\gamma_{2}}\right) 1_{\left\{\gamma_{1}>\hat{\gamma}_{2}\right\}}\right], \\
& J_{2}\left(x ; \gamma_{1}, \gamma_{2}\right):=\mathbb{E}_{x}\left[e^{-r \gamma_{2}} g_{2}\left(X_{\gamma_{2}}\right) 1_{\left\{\gamma_{2}<\hat{\gamma}_{1}\right\}}+e^{-r \gamma_{1}} V^{h_{2}}\left(X_{\gamma_{1}}\right) 1_{\left\{\hat{\gamma}_{1} \leq \gamma_{2}\right\}}\right] .
\end{aligned}
$$

Our generalisation

Introduction

■ Let the underlying X be a continuous strong Markov process,
■ Assume $g_{i}, h_{i}: \mathbb{R} \rightarrow[0, \infty), i=1,2$, are given continuous functions with $g_{i} \geq h_{i}$

- Denote $V^{g_{i}}(x), V^{h_{i}}(x)$ as the "American values",
- The expected discounted payoff:

$$
\begin{aligned}
& J_{1}\left(x ; \gamma_{1}, \gamma_{2}\right):=\mathbb{E}_{x}\left[e^{-r \gamma_{1}} g_{1}\left(X_{\gamma_{1}}\right) 1_{\left\{\gamma_{1} \leq \hat{\gamma}_{2}\right\}}+e^{-r \gamma_{2}} V^{h_{1}}\left(X_{\gamma_{2}}\right) 1_{\left\{\gamma_{1}>\hat{\gamma}_{2}\right\}}\right], \\
& J_{2}\left(x ; \gamma_{1}, \gamma_{2}\right):=\mathbb{E}_{x}\left[e^{-r \gamma_{2}} g_{2}\left(X_{\gamma_{2}}\right) 1_{\left\{\gamma_{2}<\hat{\gamma}_{1}\right\}}+e^{-r \gamma_{1}} V^{h_{2}}\left(X_{\gamma_{1}}\right) 1_{\left\{\hat{\gamma}_{1} \leq \gamma_{2}\right\}}\right] .
\end{aligned}
$$

Note:
■ Why V^{h} ? Because upon stopping, the game reduces to a single player stopping game.

- γ_{1}, γ_{2} are randomised.

Some results

Introduction

Proposition

If γ_{2} is a $\left(U, \Gamma^{2}\right)$-randomised stopping time and τ is a stopping time, then

$$
J_{1}\left(x ; \tau, \gamma_{2}\right)=\mathbb{E}_{X}\left[e^{-r \tau} g_{1}\left(X_{\tau}\right)\left(1-p_{1} \Gamma_{\tau}^{2}\right)+p_{1} \int_{[0, \tau)} e^{-r t} V^{h_{1}}\left(X_{t}\right) d \Gamma_{t}^{2}\right] .
$$

A verification result

Introduction
Our ghost game

Examples

Theorem

Let two continuous functions $u^{1}, u^{2}: \mathbb{R} \times[0,1]^{2} \rightarrow[0, \infty)$ and a pair $\left(\Gamma^{1}, \Gamma^{2}\right)$ be given. Define two processes

$$
\begin{aligned}
& M_{t}^{1}:=e^{-r t}\left(1-p_{1} \Gamma_{t}^{2}\right) u^{1}\left(X_{t}, \Pi_{t}^{1}, \Pi_{t}^{2}\right)+p_{1} \int_{[0, t]} e^{-r s} V^{h_{1}}\left(X_{s}\right) d \Gamma_{s}^{2}, \\
& M_{t}^{2}:=e^{-r t}\left(1-p_{2} \Gamma_{t}^{1}\right) u^{2}\left(X_{t}, \Pi_{t}^{1}, \Pi_{t}^{2}\right)+p_{2} \int_{[0, t]} e^{-r s} V^{h_{2}}\left(X_{s}\right) d \Gamma_{s}^{1} .
\end{aligned}
$$

Assume that for $i=1,2$,

A verification result

Introduction

Our ghost game

Examples

Theorem

Let two continuous functions $u^{1}, u^{2}: \mathbb{R} \times[0,1]^{2} \rightarrow[0, \infty)$ and a pair $\left(\Gamma^{1}, \Gamma^{2}\right)$ be given. Define two processes

$$
\begin{aligned}
& M_{t}^{1}:=e^{-r t}\left(1-p_{1} \Gamma_{t}^{2}\right) u^{1}\left(X_{t}, \Pi_{t}^{1}, \Pi_{t}^{2}\right)+p_{1} \int_{[0, t]} e^{-r s} V^{h_{1}}\left(X_{s}\right) d \Gamma_{s}^{2}, \\
& M_{t}^{2}:=e^{-r t}\left(1-p_{2} \Gamma_{t}^{1}\right) u^{2}\left(X_{t}, \Pi_{t}^{1}, \Pi_{t}^{2}\right)+p_{2} \int_{[0, t]} e^{-r s} V^{h_{2}}\left(X_{s}\right) d \Gamma_{s}^{1} .
\end{aligned}
$$

Assume that for $i=1,2$,
(i) M^{i} is a supermartingale, M^{1} is a martingale for $t \leq \tau_{g_{1}}$, and M^{2} is a martingale for $t<\tau_{g_{2}}$;

A verification result

Introduction

Our ghost game

Examples

Theorem

Let two continuous functions $u^{1}, u^{2}: \mathbb{R} \times[0,1]^{2} \rightarrow[0, \infty)$ and a pair $\left(\Gamma^{1}, \Gamma^{2}\right)$ be given. Define two processes

$$
\begin{aligned}
& M_{t}^{1}:=e^{-r t}\left(1-p_{1} \Gamma_{t}^{2}\right) u^{1}\left(X_{t}, \Pi_{t}^{1}, \Pi_{t}^{2}\right)+p_{1} \int_{[0, t]} e^{-r s} V^{h_{1}}\left(X_{s}\right) d \Gamma_{s}^{2}, \\
& M_{t}^{2}:=e^{-r t}\left(1-p_{2} \Gamma_{t}^{1}\right) u^{2}\left(X_{t}, \Pi_{t}^{1}, \Pi_{t}^{2}\right)+p_{2} \int_{[0, t]} e^{-r s} V^{h_{2}}\left(X_{s}\right) d \Gamma_{s}^{1} .
\end{aligned}
$$

Assume that for $i=1,2$,
(i) M^{i} is a supermartingale, M^{1} is a martingale for $t \leq \tau_{g_{1}}$, and M^{2} is a martingale for $t<\tau_{g_{2}}$;
(ii) $u^{1}\left(X_{t}, \Pi_{t}^{1}, \Pi_{t}^{2}\right) \geq g_{1}\left(X_{t}\right)$ and $u^{2}\left(X_{t}, \Pi_{t}^{1}, \Pi_{t}^{2}\right) \geq g_{2}\left(X_{t}\right) \mathbb{P}_{x}$-a.s.;

A verification result

Introduction

Our ghost game

Examples

Theorem

Let two continuous functions $u^{1}, u^{2}: \mathbb{R} \times[0,1]^{2} \rightarrow[0, \infty)$ and a pair $\left(\Gamma^{1}, \Gamma^{2}\right)$ be given. Define two processes

$$
\begin{aligned}
& M_{t}^{1}:=e^{-r t}\left(1-p_{1} \Gamma_{t}^{2}\right) u^{1}\left(X_{t}, \Pi_{t}^{1}, \Pi_{t}^{2}\right)+p_{1} \int_{[0, t]} e^{-r s} V^{h_{1}}\left(X_{s}\right) d \Gamma_{s}^{2}, \\
& M_{t}^{2}:=e^{-r t}\left(1-p_{2} \Gamma_{t}^{1}\right) u^{2}\left(X_{t}, \Pi_{t}^{1}, \Pi_{t}^{2}\right)+p_{2} \int_{[0, t]} e^{-r s} V^{h_{2}}\left(X_{s}\right) d \Gamma_{s}^{1} .
\end{aligned}
$$

Assume that for $i=1,2$,
(i) M^{i} is a supermartingale, M^{1} is a martingale for $t \leq \tau_{g_{1}}$, and M^{2} is a martingale for $t<\tau_{g_{2}}$;
(ii) $u^{1}\left(X_{t}, \Pi_{t}^{1}, \Pi_{t}^{2}\right) \geq g_{1}\left(X_{t}\right)$ and $u^{2}\left(X_{t}, \Pi_{t}^{1}, \Pi_{t}^{2}\right) \geq g_{2}\left(X_{t}\right) \mathbb{P}_{x}$-a.s.;
(iii) $\Gamma_{t}^{i}=\int_{0}^{t} 1_{\left\{u^{i}\left(X_{s}, \Pi_{s}^{1}, \Pi_{s}^{2}\right)=g^{i}\left(X_{s}\right)\right\}} d \Gamma_{s}^{i}$.

Then $\left(\Gamma^{1}, \Gamma^{2}\right)$ is a Nash equilibrium, and the equilibrium values are given by $u^{1}\left(x, p_{1}, p_{2}\right)$ and $u^{2}\left(x, p_{1}, p_{2}\right)$, respectively.

Outline

(3) Examples

Example 1. Symmetric case with no consolation

Introduction
Our ghost game

Examples

In this case $g_{1}=g_{2}=g, h_{1}=h_{2}=0$, (De Anglis and Ekström)

Example 1. Symmetric case with no consolation

In this case $g_{1}=g_{2}=g, h_{1}=h_{2}=0$, (De Anglis and Ekström)

- $u^{i}\left(x, p_{1}, p_{2}\right)=\left(1-p_{1}\right) V^{g}(x), b(x):=1-\frac{g(x)}{V^{g}(x)}$.
- Γ^{2} is characterised by the boundary b and $\inf b\left(X_{t}\right)$

Example 1. Symmetric case with no consolation

In this case $g_{1}=g_{2}=g, h_{1}=h_{2}=0$, (De Anglis and Ekström)

- $u^{i}\left(x, p_{1}, p_{2}\right)=\left(1-p_{1}\right) V^{g}(x), b(x):=1-\frac{g(x)}{V^{g}(x)}$.
- Γ^{2} is characterised by the boundary b and $\inf b\left(X_{t}\right)$

$$
\Gamma_{t}^{1}=\left\{\begin{array}{cl}
\frac{p_{1}}{p_{2}} \Gamma_{t}^{2} & t<\tau_{g} \\
1 & t \geq \tau_{g} .
\end{array}\right.
$$

Example 1. Symmetric case with no consolation

In this case $g_{1}=g_{2}=g, h_{1}=h_{2}=0$, (De Anglis and Ekström)

- $u^{i}\left(x, p_{1}, p_{2}\right)=\left(1-p_{1}\right) V^{g}(x), b(x):=1-\frac{g(x)}{V^{g}(x)}$.
- Γ^{2} is characterised by the boundary b and $\inf b\left(X_{t}\right)$

$$
\Gamma_{t}^{1}=\left\{\begin{array}{cl}
\frac{p_{1}}{p_{2}} \Gamma_{t}^{2} & t<\tau_{g} \\
1 & t \geq \tau_{g}
\end{array}\right.
$$

\square In this case, $M_{t}^{i}=\left(1-p_{i}\right) e^{-r t} V^{g}\left(X_{t}\right)$, martingales. UNIVERSITET

Example 2. Symmetric case with consolation (special case)

Introduction
Our ghost game

Examples

In this case $g_{1}=g_{2}=g, h_{1}=h_{2}=h$, and UNIVERSITET

Example 2. Symmetric case with consolation (special case)

Introduction

In this case $g_{1}=g_{2}=g, h_{1}=h_{2}=h$, and

$$
\left\{x \in \mathbb{R}: V^{g}(x)<g(x)\right\} \subseteq\left\{x \in \mathbb{R}: V^{h}(x)<h(x)\right\},
$$

Example 2. Symmetric case with consolation (special case)

Introduction

In this case $g_{1}=g_{2}=g, h_{1}=h_{2}=h$, and

$$
\left\{x \in \mathbb{R}: V^{g}(x)<g(x)\right\} \subseteq\left\{x \in \mathbb{R}: V^{h}(x)<h(x)\right\},
$$

- $e^{-r t \wedge \tau^{g}} V^{h}\left(X_{t \wedge \tau^{g}}\right)$ is a martingale,

Example 2. Symmetric case with consolation (special case)

Introduction

Our ghost

 gameExamples

In this case $g_{1}=g_{2}=g, h_{1}=h_{2}=h$, and

$$
\left\{x \in \mathbb{R}: V^{g}(x)<g(x)\right\} \subseteq\left\{x \in \mathbb{R}: V^{h}(x)<h(x)\right\},
$$

- $e^{-r t \wedge \tau^{g}} V^{h}\left(X_{t \wedge \tau^{g}}\right)$ is a martingale,
- $u^{i}\left(x, p_{1}, p_{2}\right):=\left(1-p_{1}\right) V^{g}(x)+p_{1} V^{h}(x)$.

Example 2. Symmetric case with consolation (special case)

Introduction

Our ghost

 gameExamples

In this case $g_{1}=g_{2}=g, h_{1}=h_{2}=h$, and

$$
\left\{x \in \mathbb{R}: V^{g}(x)<g(x)\right\} \subseteq\left\{x \in \mathbb{R}: V^{h}(x)<h(x)\right\},
$$

- $e^{-r t \wedge \tau^{g}} V^{h}\left(X_{t \wedge \tau^{g}}\right)$ is a martingale,
- $u^{i}\left(x, p_{1}, p_{2}\right):=\left(1-p_{1}\right) V^{g}(x)+p_{1} V^{h}(x)$.
- $b(x):=\frac{V^{g}(x)-g(x)}{V^{g}(x)-V^{n}(x)} \wedge 1$

UNIVERSITET

Example 3. Asymmetric case with no consolation

- We assume that $g_{i}(x)=\left(x-K_{i}\right)^{+}, \quad h_{i}(x)=0$, where $0<K_{2}<K_{1}<b_{2}<b_{1}$.
- The players observe a GBM

Example 3. Asymmetric case with no consolation

- We assume that $g_{i}(x)=\left(x-K_{i}\right)^{+}, \quad h_{i}(x)=0$, where $0<K_{2}<K_{1}<b_{2}<b_{1}$.
- The players observe a GBM

Observe that

- Player 1 is not afraid of competition

Example 3. Asymmetric case with no consolation

- We assume that $g_{i}(x)=\left(x-K_{i}\right)^{+}, \quad h_{i}(x)=0$, where $0<K_{2}<K_{1}<b_{2}<b_{1}$.
- The players observe a GBM

Observe that

- Player 1 is not afraid of competition
- Player 1 naturally has a larger $\tau^{g_{1}}$.

Example 3. Asymmetric case with no consolation

- We assume that $g_{i}(x)=\left(x-K_{i}\right)^{+}, \quad h_{i}(x)=0$, where $0<K_{2}<K_{1}<b_{2}<b_{1}$.
- The players observe a GBM

Observe that

- Player 1 is not afraid of competition
- Player 1 naturally has a larger $\tau^{g_{1}}$.

These suggest an ansatz for player 1 :

$$
u^{1}\left(x, p_{1}, p_{2}\right)=\left(1-p_{1}\right) V^{g_{1}}(x) .
$$

Example 3. Asymmetric case with no consolation

- The stopping boundary for player 1 :

$$
p_{1}=b(x)=\left\{\begin{array}{l}
1-\left(\frac{g_{1}}{V g_{1}}\right)(x), x<b_{2}, \\
0, x \geq b_{2} .
\end{array}\right.
$$

- $b(x)$ is non-increasing.
- Define $\hat{p}=1-\left(\frac{g_{1}}{V g_{1}}\right)\left(b_{2}\right)$ UNIVERSITET

Example 3. Asymmetric case with no consolation

■ Case 1: $p_{1} \leq \hat{p}$: both players just wait.

Example 3. Asymmetric case with no consolation

■ Case 1: $p_{1} \leq \hat{p}$: both players just wait.

- Case 2: $p_{1}>\hat{p}$:
- On $b, u_{2}=g_{2}$:

$$
u^{2}\left(x, p_{1}, p_{2}\right)=\psi(x)\left(\frac{g_{2}}{\psi}\right)\left(b^{-1}\left(p_{1}\right)\right)
$$

Example 3. Asymmetric case with no consolation

■ Case 1: $p_{1} \leq \hat{p}$: both players just wait.

- Case 2: $p_{1}>\hat{p}$:
- On $b, u_{2}=g_{2}$:

$$
u^{2}\left(x, p_{1}, p_{2}\right)=\psi(x)\left(\frac{g_{2}}{\psi}\right)\left(b^{-1}\left(p_{1}\right)\right)
$$

- We have $M_{t}^{1}=\left(1-p_{1}\right) e^{-r t} V^{g_{1}}\left(X_{t}\right)$,

Example 3. Asymmetric case with no consolation

■ Case 1: $p_{1} \leq \hat{p}$: both players just wait.

- Case 2: $p_{1}>\hat{p}$:
- On $b, u_{2}=g_{2}$:

$$
u^{2}\left(x, p_{1}, p_{2}\right)=\psi(x)\left(\frac{g_{2}}{\psi}\right)\left(b^{-1}\left(p_{1}\right)\right)
$$

- We have $M_{t}^{1}=\left(1-p_{1}\right) e^{-r t} V^{g_{1}}\left(X_{t}\right)$,
- For M^{2} to be a martingale, we need

$$
\begin{gathered}
d M_{t}^{2}=0 \\
\Longleftrightarrow d\left(\log \left(1-p_{2} \Gamma_{t}^{1}\right)\right)=C\left(p_{1}\right) d\left(\frac{1}{1-p_{1} \Gamma_{t}^{1}}\right)
\end{gathered}
$$

Example 3. Asymmetric case with no consolation

■ Case 1: $p_{1} \leq \hat{p}$: both players just wait.
■ Case 2: $p_{1}>\hat{p}$:

- On $b, u_{2}=g_{2}$:

$$
u^{2}\left(x, p_{1}, p_{2}\right)=\psi(x)\left(\frac{g_{2}}{\psi}\right)\left(b^{-1}\left(p_{1}\right)\right)
$$

- We have $M_{t}^{1}=\left(1-p_{1}\right) e^{-r t} V^{g_{1}}\left(X_{t}\right)$,
- For M^{2} to be a martingale, we need

$$
\begin{gathered}
d M_{t}^{2}=0 \\
\Longleftrightarrow d\left(\log \left(1-p_{2} \Gamma_{t}^{1}\right)\right)=C\left(p_{1}\right) d\left(\frac{1}{1-p_{1} \Gamma_{t}^{1}}\right)
\end{gathered}
$$

for some $C\left(p_{1}\right)$ (explicit) and $\Gamma_{0}^{1}=\Gamma_{0}^{2}=0$.

Example 3. Asymmetric case with no consolation

■ Case 1: $p_{1} \leq \hat{p}$: both players just wait.

- Case 2: $p_{1}>\hat{p}$:
- On $b, u_{2}=g_{2}$:

$$
u^{2}\left(x, p_{1}, p_{2}\right)=\psi(x)\left(\frac{g_{2}}{\psi}\right)\left(b^{-1}\left(p_{1}\right)\right)
$$

- We have $M_{t}^{1}=\left(1-p_{1}\right) e^{-r t} V^{g_{1}}\left(X_{t}\right)$,
- For M^{2} to be a martingale, we need

$$
\begin{gathered}
d M_{t}^{2}=0 \\
\Longleftrightarrow d\left(\log \left(1-p_{2} \Gamma_{t}^{1}\right)\right)=C\left(p_{1}\right) d\left(\frac{1}{1-p_{1} \Gamma_{t}^{1}}\right)
\end{gathered}
$$

for some $C\left(p_{1}\right)$ (explicit) and $\Gamma_{0}^{1}=\Gamma_{0}^{2}=0$.

- An equilibrium $\left(\Gamma^{1}, \Gamma^{2}\right)$ can be found.

Example 3. Asymmetric case with no consolation

■ Case 1: $p_{1} \leq \hat{p}$: both players just wait.

- Case 2: $p_{1}>\hat{p}$:
- On $b, u_{2}=g_{2}$:

$$
u^{2}\left(x, p_{1}, p_{2}\right)=\psi(x)\left(\frac{g_{2}}{\psi}\right)\left(b^{-1}\left(p_{1}\right)\right)
$$

- We have $M_{t}^{1}=\left(1-p_{1}\right) e^{-r t} V^{g_{1}}\left(X_{t}\right)$,
- For M^{2} to be a martingale, we need

$$
\begin{gathered}
d M_{t}^{2}=0 \\
\Longleftrightarrow d\left(\log \left(1-p_{2} \Gamma_{t}^{1}\right)\right)=C\left(p_{1}\right) d\left(\frac{1}{1-p_{1} \Gamma_{t}^{1}}\right)
\end{gathered}
$$

for some $C\left(p_{1}\right)$ (explicit) and $\Gamma_{0}^{1}=\Gamma_{0}^{2}=0$.

- An equilibrium $\left(\Gamma^{1}, \Gamma^{2}\right)$ can be found.

If τ^{g} 's are not ordered: complicated!

Example 4. Symmetric case with consolation

In this case $g_{1}=g_{2}=g, h_{1}=h_{2}=h . e^{-r t} V^{h}\left(X_{t}\right)$ is not necessarily a m.g.

In this case $g_{1}=g_{2}=g, h_{1}=h_{2}=h . e^{-r t} V^{h}\left(X_{t}\right)$ is not necessarily a m.g.

- For now assume $p_{1}=p_{2}=p$.

Example 4. Symmetric case with consolation

Example 4. Symmetric case with consolation

In this case $g_{1}=g_{2}=g, h_{1}=h_{2}=h . e^{-r t} V^{h}\left(X_{t}\right)$ is not necessarily a m.g.

- For now assume $p_{1}=p_{2}=p$.
- Consider an Ito diffusion as the underlying.

Example 4. Symmetric case with consolation

In this case $g_{1}=g_{2}=g, h_{1}=h_{2}=h . e^{-r t} V^{h}\left(X_{t}\right)$ is not necessarily a m.g.

■ For now assume $p_{1}=p_{2}=p$.
■ Consider an Ito diffusion as the underlying.
■ In the x coordinate, $\mathscr{L}^{x} u-r u=0, \Longrightarrow u(x, p)=c(p) \psi(x)$.

Example 4. Symmetric case with consolation

In this case $g_{1}=g_{2}=g, h_{1}=h_{2}=h . e^{-r t} V^{h}\left(X_{t}\right)$ is not necessarily a m.g.

- For now assume $p_{1}=p_{2}=p$.
- Consider an Ito diffusion as the underlying.
- In the x coordinate, $\mathscr{L}^{x} u-r u=0, \Longrightarrow u(x, p)=c(p) \psi(x)$.

On the stopping boundary: $u(x, p)=g(x)$, and the process

$$
R_{t}:=e^{-r t}\left(\Pi_{t}\left(1-\Gamma_{t}\right) u\left(X_{t}, \Pi_{t}\right)+\Pi_{t} \Gamma_{t} V^{h}\left(X_{t}\right)+\left(1-\Pi_{t}\right) u\left(X_{t}, \Pi_{t}\right)\right)
$$

is a martingale.

$$
\Gamma_{0}=0 \Longrightarrow d R_{t}=\left(p V^{h}-p u-p(1-p) u_{p}\right) d \Gamma_{t}=0
$$

Example 4. Symmetric case with consolation

In this case $g_{1}=g_{2}=g, h_{1}=h_{2}=h . e^{-r t} V^{h}\left(X_{t}\right)$ is not necessarily a m.g.

- For now assume $p_{1}=p_{2}=p$.
- Consider an Ito diffusion as the underlying.
- In the x coordinate, $\mathscr{L}^{x} u-r u=0, \Longrightarrow u(x, p)=c(p) \psi(x)$.

On the stopping boundary: $u(x, p)=g(x)$, and the process

$$
R_{t}:=e^{-r t}\left(\Pi_{t}\left(1-\Gamma_{t}\right) u\left(X_{t}, \Pi_{t}\right)+\Pi_{t} \Gamma_{t} V^{h}\left(X_{t}\right)+\left(1-\Pi_{t}\right) u\left(X_{t}, \Pi_{t}\right)\right)
$$

is a martingale.

$$
\Gamma_{0}=0 \Longrightarrow d R_{t}=\left(p V^{h}-p u-p(1-p) u_{p}\right) d \Gamma_{t}=0
$$

which gives us

$$
u(x, p)+(1-p) u_{p}(x, p)=v^{h}(x) .
$$

Example 4. Symmetric case with consolation

When the boundary is one-sided: solve this ODE:

Introduction
Our ghost game

Examples

Example 4. Symmetric case with consolation

When the boundary is one-sided: solve this ODE:

Theorem

Assume that $\left\{V^{g}>g\right\} \cap\left\{V^{h}<g\right\}=\left(x_{1}, x_{0}\right)$, where x_{1}, x_{0} are the unique roots of $\left(V^{h}-g\right)(x)=0$ and $\left(V^{g}-g\right)(x)=0$, respectively. Assume further that $\frac{g}{\psi}$ is strictly increasing in x on the interval $\left(x_{1}, x_{0}\right)$. Then the
stopping boundary b is monotonically decreasing on $\left(x_{1}, x_{0}\right)$.
Furthermore, b has the following explicit expression:

$$
b(x)=1-\exp \left(\int_{x}^{x_{0}} \frac{\left(\frac{g}{\psi}\right)_{x} \psi}{V^{h}-g}(y) d y\right)
$$

Furthermore, the equilibrium u has the following expression:

$$
u(x, p)=\frac{g\left(b^{-1}(p)\right)}{\psi\left(b^{-1}(p)\right)} \psi(x) .
$$

UNIVERSITET

Example 4. Symmetric case with consolation

■ Two-sided? Solve an ODE system, checking $u>g$!

UNIVERSITET

Example 4. Symmetric case with consolation

- Two-sided? Solve an ODE system, checking $u>g$!
- What if $p_{1}<p_{2}$? We believe $u^{1}=u^{2}=u\left(x, p_{1}\right)$.

Example 4. Symmetric case with consolation

- Two-sided? Solve an ODE system, checking $u>g$!

■ What if $p_{1}<p_{2}$? We believe $u^{1}=u^{2}=u\left(x, p_{1}\right)$.

- What if $p_{1}<p_{2}$ and $h_{1} \neq h_{2}$?

$$
u^{1}=u^{2}=u\left(x, p_{1}, p_{2}\right) .
$$

Example 4. Symmetric case with consolation

- Two-sided? Solve an ODE system, checking $u>g$!

■ What if $p_{1}<p_{2}$? We believe $u^{1}=u^{2}=u\left(x, p_{1}\right)$.

- What if $p_{1}<p_{2}$ and $h_{1} \neq h_{2}$?

$$
u^{1}=u^{2}=u\left(x, p_{1}, p_{2}\right) .
$$

Solvability? We don't know.

Summary

■ In the presence of asymmetry and consolation, in general, we don't have explicit solutions.

Summary

- In the presence of asymmetry and consolation, in general, we don't have explicit solutions.
■ In some cases (when?), we can hope for explicit solutions for one of the players

Summary

- In the presence of asymmetry and consolation, in general, we don't have explicit solutions.
■ In some cases (when?), we can hope for explicit solutions for one of the players
- The stopping boundary is a surface $f\left(x, p_{1}, p_{2}\right)=0$.

Summary

- In the presence of asymmetry and consolation, in general, we don't have explicit solutions.
■ In some cases (when?), we can hope for explicit solutions for one of the players
- The stopping boundary is a surface $f\left(x, p_{1}, p_{2}\right)=0$.
- How to construct?
- Solvability of variational inequality
- Fixed-point approach?

Thank you!

