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Statistics & Optimal stopping

Classical problem: Testing the unknown drift of a BM.

Observe the trajectory of a BM with unknown drift:
Xt == @t+ Wt.

where P(@=1)=n=1-P(©=0), 7 € (0,1).

Want to test: H; : © =1, Hy:© =0, as accurately as possible.
Observation is not free: ¢ > 0 per unit time of observation.
Need to test as fast as possible.

e 6 6 o

The time to stop observing is part of the decision.
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Statistics & Optimal stopping

Solution: optimal stopping in another coordinate.

@ The minimised cost V:

V=inf{P(d=00=1)+P(d=10=0)+cE[]}. (1)

@ Defining the posterior probability process

Mg :=Pr(© = 117,
@ Problem (1) can be written as
V(r)= ir;fIEn[cT+ MeA(1=117)]

where B
dl_lt == I_It(l - I_It)th,

e Standard method: explicit solution: Shiryaev (1969).
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Application in finance: unknown parameters

@ Direct application: testing the unknown drift of a stock (GBM).
@ What about an unknown volatility?

dXt = ‘uXtdt + eXtth

— Not a valid question in continuous time!

Sample trajectory of a Brownian Motion

Position

0 20 40 60 80 100
Time

@ Financial data is not really continuous.
This motivates us to consider things in discrete time.
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Natural questions to ask

Question 1: what is the natural class of problems to study in
discrete time?
(In terms of composite testing, whole range of possibilities)

@ Or, what family of distributions do we consider?

o Exponential family is the answer: Gaussian, Bernoulli, binomial,
Poisson, exponential, beta, ...

fx(x]0) = h(x)exp{0x — B(8)},

Question 2: can we assign arbitrary distribution to the unknown
parameter?

o Explicit solutions?
@ Otherwise, what structural properties does the problem exhibit?
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What are we building on?

Discrete time: popular in the 60s and 70s

@ Studied on a case-by-case basis and rely on conjugate priors:
Lindley and Barnett (1965), Moriguti and Robbins (1962).

@ Focus on asymptotic behaviour:
Schwartz (1962), Bickel (1973), Lai (1988).

@ c.f. Sobel (1953), Alvo (1977), Cablio (1977).

v

Continuous time: many generalisations

@ Finite horizon: Gapeev and Peskir (2004), Poisson: Peskir and Shiryaev
(2000), multi-dimensional: Ekstrém and Wang (2022).

@ Most literature uses binary priors (c.f. Zhitlukhin and Shiryaev (2011),
Ekstréom and Vaicenavicius (2015), Ekstrom, Karatzas & Vaicenavicius
(2022)).
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Structural properties

Discrete-time sequential testing

The general set-up:

@ The tester observes X7, Xo, ... sequentially with cost ¢ at each step.

@ X, 's are drawn from a one-parameter exponential family depending
on r.v. ©: conditioning on © = u, X|'s are independent, and

P(X, € A|© = u) = / e BWy(dx).
A

o u: (arbitrary) prior of the unknown parameter ©
@ Denote the support of g by S, and ST := SN 6, ).
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Set-up
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Ho: © <6,
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o Let d =/ represent H; is accepted.
@ Define the minimal cost

Vi=inf {P(d = 1,0 < 69) +P(d = 0,0 > ) + cE[r]}.
T,

Yugiong Wang - Uppsala University 10/31



Sequential composite hypothesis testing Set-up
Structural properties

Reformulation in the 7 coordinate

@ Define the posterior probability process Il
M, :=P(0 > 6| 7),

with Mo = u(S*) =r.

Yugiong Wang - Uppsala University 11/31



Sequential composite hypothesis testing Set-up
Structural properties

Reformulation in the 7 coordinate

@ Define the posterior probability process Il
M, :=P(0 > 6| 7),

with Mo = u(S*) =r.

e Given 7,

0 ifM,<1/2
1 if Ny >1/2,

Yugiong Wang - Uppsala University 11/31



Sequential composite hypothesis testing Set-up
Structural properties

Reformulation in the 7 coordinate

@ Define the posterior probability process Il
M, :=P(0 > 6| 7),

with Mo = u(S*) =r.

e Given 7,

0 ifM,<1/2
1 if Ny >1/2,

o Consequently,
V = |nf E[nf/\(l_ |_|1)+C’C]7
eI

Yugiong Wang - Uppsala University 11/31



Sequential composite hypothesis testing Set-up
Structural properties

Reformulation in the 7 coordinate

@ Define the posterior probability process Il
M, :=P(0 > 6| 7),
with Mo = u(S*) =r.

e Given 7,

0 ifM,<1/2
1 if Ny >1/2,

o Consequently,
V = |nf E[nf/\(l_ |_|1)+C’C]7
eI

Can we do Markovian embedding?
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Properties of the 1 process

@ At time n, given X1 = xy,..., X, = X, by the Bayes theorem,

P(© > 6g| X1 = x1,..., Xn = xn)
:f5+ [T 1 pu(xi)u(du)
Js TT721 pu(xi)p(du)
s eplu - nB(u) )
Jsexp{ud "7 x;i—nB(u)}u(du)

@ Denoting Y, :=> .11 X;:

I_In = q(nv Yn)-

where
gy L )
’ ’ fS euyan(u)‘u(du) :
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Define P z(-) :=P(-|M, = ). The optimal stopping problem can be
written as
V(n,m)= ir%f]En‘ﬂ[l"IH,, A(1=Negp)+cT).

Lemma (Dynamic programming)

The value function V(n,r) satisfies

V(in—1,m)=min{x A(1—7),c+En_1[V(n,N,)]}.

<

Lemma (Preservation of concavity)

Let f :[0,1] — [0,%0) be a concave function. Then 7t — Ep, z[f(Mp41)] is
concave on (0,1).
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Main result 1: concavity

Theorem (Concavity)

The function T — V/(n, ) is concave for each fixed n > 0.

Introduce now

@ The continuation region %"
€ :={(n,m) eNg x[0,1]: V(n,mr) < A(1l—m)},
@ The stopping region 2 by
2 ={(n,m) eNgx[0,1] : V(n,m) = A(1—7)}.
@ The stopping time
5 :=inf{lk>0:(n+k,MNy«) € D}

is an optimal strategy.
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Main result 1: concavity

The continuation region is of the form (by(n), bo(n))
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Main result 2: concentration of the posterior

The posterior distribution squeezes in
If a< 6y < b, then

n—P,(©<a) & n—Pyz(0>Db)

are decreasing.

As a consequence, the m—level curves are spreading out.
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dominates M,41|{M, =7} in convex order.

@ Assume the above holds. Then V/(n, ) is non-decreasing in n, and the
boundaries are monotone.

@ But does this assumption always hold? A: We don't know.

Time-monotonicity?

@ Holds for some examples with any prior (Gaussian w. unknown mean,
Bernoulli, Binomial).

@ Holds for some other examples for some families of priors (Exp, Gaussian
w. unknown variance).

@ No counter-example is found.

Conjecture: V is non-decreasing in n.
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Introduction

Aside from testing, another natural question to ask is

What is the value of the unknown parameter? J
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Introduction

Aside from testing, another natural question to ask is

What is the value of the unknown parameter? J

@ Want to obtain an accurate estimate in the presence of cost.

@ We can ask similar questions as in the testing problem. (remind the
audience the questions)
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@ The basic set-up is the same as in testing
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@ The basic set-up is the same as in testing

@ Formulate the stopping problem in another coordinate.

The coordinate

Define the posterior estimate process:

N

6, =E [e@nx].
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Discrete-time sequential estimation

@ The basic set-up is the same as in testing

@ Formulate the stopping problem in another coordinate.

The coordinate

Define the posterior estimate process:

N

6, =E [e@nx].

Want to minimize:

E [(@ —6.)%+ cr}

over stopping times.
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Markovian embedding

Similarly, we are fine in this coordinate because

©n = Gp(Ys) is a strictly increasing bijection. J
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A

©n = Gp(Ys) is a strictly increasing bijection. J

Again, we need the exponential family for this to hold!
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Markovian embedding

Similarly, we are fine in this coordinate because

A

©n = Gp(Ys) is a strictly increasing bijection. J

Again, we need the exponential family for this to hold!

o Define W(n,8,) = Var(©].ZX), then V can be written in the 6,
coordinate:

V(n, ) = inf Ey g [W(n+7, Opi1) +cTl.
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Markovian embedding

Similarly, we are fine in this coordinate because

A

©n = Gp(Ys) is a strictly increasing bijection. J

Again, we need the exponential family for this to hold!

o Define W(n,8,) = Var(©].ZX), then V can be written in the 6,
coordinate:

V(n, ) = inf Ey g [W(n+7, Opi1) +cTl.

o Note that M, := W (n,©,)+©?2 is a martingale, we can further write

V(n.60) = W(n.60) + inf Epg, [i: (c— (8%, é,?))]
0

=

=:W(n,60p)+ v(n,6).
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Main result: conditions for space-monotonicity

First-order stochastic dominance

If g < 6o, then P(O% < a) > P(é,é," < a), for all ae R and all n> 0.
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Main result: conditions for space-monotonicity

First-order stochastic dominance

If 69 < Bg, then ]P’(ég" <a)> P(é,é," < a), for all aeR and all n> 0.

As a consequence,

Space-monotonicity of v

Assume that for all k > 0, the mapping

60— Ev,g0 | 6341 — 66

is non-decreasing, then the value function v(n,6p) is non-increasing in g
for any fixed n > 0.
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Main result: conditions for space-monotonicity

First-order stochastic dominance

If 69 < Bg, then ]P’(ég" <a)> P(é,é," < a), for all aeR and all n> 0.

As a consequence,

Space-monotonicity of v

Assume that for all k > 0, the mapping

60— Ev,g0 | 6341 — 66

is non-decreasing, then the value function v(n,6p) is non-increasing in g
for any fixed n > 0.

This implies a one-sided stopping boundary.

Yugiong Wang - Uppsala University 23/31
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Monotonicity in Space

This is not a general result. It depends on both the prior and the
observation.
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Monotonicity in Space

This is not a general result. It depends on both the prior and the
observation.

Some examples

@ Bernoulli observations with any prior: not monotone.

@ Exponential observations with a gamma prior: monotone.

@ Gaussian observations with unknown variance and an inverse gamma
prior: monotone.
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Monotonicity in Space

This is not a general result. It depends on both the prior and the
observation.

Some examples

@ Bernoulli observations with any prior: not monotone.
@ Exponential observations with a gamma prior: monotone.

@ Gaussian observations with unknown variance and an inverse gamma
prior: monotone.

@ What about concavity? Not to be expected.
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Monotonicity in Space

This is not a general result. It depends on both the prior and the
observation.

Some examples

Bernoulli observations with any prior: not monotone.

Exponential observations with a gamma prior: monotone.

Gaussian observations with unknown variance and an inverse gamma
prior: monotone.

What about concavity? Not to be expected.

@ What about time-monotonicity? We have some partial results. e.g.

Yugiong Wang - Uppsala University 24 /31
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The structure of continuation/stopping
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e Applications in control: an example
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Dynamic pricing under a binary prior

An example in stochastic control: set-up
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Dynamic pricing under a binary prior

An example in stochastic control: set-up
o Consider a seller who offers a product for sale.
@ The potential buyers arrive in a sequential fashion.
@ At time n, the seller offers a price pj.
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Dynamic pricing under a binary prior

An example in stochastic control: set-up

Consider a seller who offers a product for sale.
The potential buyers arrive in a sequential fashion.
At time n, the seller offers a price p,.

o
o
o
@ The probability that p, is accepted is the demand, D(p).
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Dynamic pricing under a binary prior

An example in stochastic control: set-up

Consider a seller who offers a product for sale.

The potential buyers arrive in a sequential fashion.

At time n, the seller offers a price p,.

The probability that p, is accepted is the demand, D(p).
But D(:) is unknown:

P(D()=D'()) =7 =1-P(D()=D°()).
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Dynamic pricing under a binary prior

An example in stochastic control: set-up

Consider a seller who offers a product for sale.

The potential buyers arrive in a sequential fashion.

At time n, the seller offers a price p,.

The probability that p, is accepted is the demand, D(p).
But D(:) is unknown:

P(D()=D'()) =7 =1-P(D()=D°()).

The seller seeks to maximise the discounted profit:

oo

Z e "paD(pn)| -

n=0

V= sup E
{Pn}nzo

Yugiong Wang - Uppsala University 27/31



Applications in control: an example

Dynamic pricing under a binary prior

An example in stochastic control: set-up

Consider a seller who offers a product for sale.

The potential buyers arrive in a sequential fashion.

At time n, the seller offers a price p,.

The probability that p, is accepted is the demand, D(p).
But D(:) is unknown:

P(D()=D'()) =7 =1-P(D()=D°()).

The seller seeks to maximise the discounted profit:

oo

Z e "paD(pn)

n=0

V= sup E
{Pn}nzo

Economic & operations research literatures: incomplete learning, myopic
strategy .... c.f. Mclennan 1984, Harrison 2012.

Yugiong Wang - Uppsala University 27/31



Applications in control: an example

Dynamic pricing under a binary prior

How does it relate to our setting?
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How does it relate to our setting?
@ Observe that it is with Bernoulli observations with a Bernoulli prior:

_J1 DO)=D(),
e{o, D()=D°().
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Dynamic pricing under a binary prior

How does it relate to our setting?
@ Observe that it is with Bernoulli observations with a Bernoulli prior:

_J1 DO)=D(),
e{o, D()=D°().

@ Define the posterior probability process

Ny,:=P(D(:)=D'()|F).
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Applications in control: an example

Dynamic pricing under a binary prior

How does it relate to our setting?
@ Observe that it is with Bernoulli observations with a Bernoulli prior:

L D('):Dl(')7
e pr—
0, D()=D().
@ Define the posterior probability process

Ny,:=P(D(:)=D'()|F).

@ The value can be written as

oo

V(TE) = ‘ SL;p Er Ze_mpn (nnDl(pn) + (1 - nn) Do(pn))
Pnyn>0 n=0
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Dynamic pricing under a binary prior

And clearly satisfies

V(rn) = slyo{e*'ﬂz,r (V(D))] +p (D' (p)+ (1 —7m) D°(p)) } .
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Dynamic pricing under a binary prior

And clearly satisfies
V(r) = slyo{e*'ﬂz,r (V(D))] +p (D' (p)+ (1 —7m) D°(p)) } .

A monotone sequence can then be constructed to find a fixed point,
which coincides with V.
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@ We use the preservation of convexity: f convex = Er[f([M1)]
convex.
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And clearly satisfies
V(r) = slyo{e*'ﬂz,r (V(D))] +p (D' (p)+ (1 —7m) D°(p)) } .

A monotone sequence can then be constructed to find a fixed point,
which coincides with V.

@ We use the preservation of convexity: f convex = Er[f([M1)]
convex.

@ The prior distribution can be relaxed to an arbitrary prior.
@ The observation can be relaxed: not necessarily Bernoulli.
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Applications in control: an example

Dynamic pricing under a binary prior

And clearly satisfies
V(r) = slyo{e*'ﬂz,r (V(D))] +p (D' (p)+ (1 —7m) D°(p)) } .

A monotone sequence can then be constructed to find a fixed point,
which coincides with V.

@ We use the preservation of convexity: f convex = Er[f([M1)]
convex.

@ The prior distribution can be relaxed to an arbitrary prior.
@ The observation can be relaxed: not necessarily Bernoulli.

This leeds to some problems of "exploration-exploitation” type.
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Summary

To summarise the talk:

@ We study the Bayesian sequential testing and estimation problems
in discrete time.

@ The unknown parameter is taken from the exponential family.
@ The prior can be arbitrary.
@ In general, no explicit solutions. We are after structural properties.

@ The problems we study open up doors to certain control problems.

Yugiong Wang - Uppsala University 30/31



Applications in control: an example

Thank you for your attention!

Contact: yugiong.wang@math.uu.se
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