Bayesian sequential testing and estimation in discrete time

Yuqiong Wang

Partly joint work with Erik Ekström.

Department of Mathematics Uppsala University

Financial/Actuarial Mathematics Seminar @ Umich

Outline

- Introduction
 - Statistics & Optimal stopping
 - Motivation for us
- Sequential composite hypothesis testing
 - Set-up
 - Structural properties
- Sequential estimation
 - Set-up
 - Structural properties
- 4 Applications in control: an example

Classical problem: Testing the unknown drift of a BM.

• Observe the trajectory of a BM with unknown drift:

$$X_t = \Theta t + W_t$$
.

where
$$\mathbb{P}(\Theta = 1) = \pi = 1 - \mathbb{P}(\Theta = 0)$$
, $\pi \in (0, 1)$.

Classical problem: Testing the unknown drift of a BM.

Observe the trajectory of a BM with unknown drift:

$$X_t = \Theta t + W_t$$
.

where
$$\mathbb{P}(\Theta = 1) = \pi = 1 - \mathbb{P}(\Theta = 0)$$
, $\pi \in (0, 1)$.

• Want to test: $H_1: \Theta = 1, H_0: \Theta = 0$, as accurately as possible.

Classical problem: Testing the unknown drift of a BM.

Observe the trajectory of a BM with unknown drift:

$$X_t = \Theta t + W_t$$
.

where
$$\mathbb{P}(\Theta = 1) = \pi = 1 - \mathbb{P}(\Theta = 0)$$
, $\pi \in (0, 1)$.

- Want to test: $H_1: \Theta = 1, H_0: \Theta = 0$, as accurately as possible.
- Observation is not free: c > 0 per unit time of observation.

Classical problem: Testing the unknown drift of a BM.

• Observe the trajectory of a BM with unknown drift:

$$X_t = \Theta t + W_t$$
.

where
$$\mathbb{P}(\Theta = 1) = \pi = 1 - \mathbb{P}(\Theta = 0)$$
, $\pi \in (0, 1)$.

- Want to test: $H_1: \Theta = 1, H_0: \Theta = 0$, as accurately as possible.
- Observation is not free: c > 0 per unit time of observation.
- Need to test as fast as possible.

Classical problem: Testing the unknown drift of a BM.

Observe the trajectory of a BM with unknown drift:

$$X_t = \Theta t + W_t$$
.

where
$$\mathbb{P}(\Theta = 1) = \pi = 1 - \mathbb{P}(\Theta = 0)$$
, $\pi \in (0, 1)$.

- Want to test: $H_1: \Theta = 1, H_0: \Theta = 0$, as accurately as possible.
- Observation is not free: c > 0 per unit time of observation.
- Need to test as fast as possible.
- The time to stop observing is part of the decision.

Solution: optimal stopping in another coordinate.

Solution: optimal stopping in another coordinate.

• The minimised cost *V*:

$$V = \inf_{\tau, d} \left\{ \mathbb{P}(d = 0, \Theta = 1) + \mathbb{P}(d = 1, \Theta = 0) + c\mathbb{E}[\tau] \right\}. \tag{1}$$

Solution: optimal stopping in another coordinate.

• The minimised cost *V*:

$$V = \inf_{\tau,d} \left\{ \mathbb{P}(d=0,\Theta=1) + \mathbb{P}(d=1,\Theta=0) + c\mathbb{E}[\tau] \right\}. \tag{1}$$

Defining the posterior probability process

$$\Pi_t := \mathbb{P}_{\pi}(\Theta = 1 | \mathscr{F}_t^X),$$

Solution: optimal stopping in another coordinate.

• The minimised cost V:

$$V = \inf_{\tau,d} \left\{ \mathbb{P}(d=0,\Theta=1) + \mathbb{P}(d=1,\Theta=0) + c\mathbb{E}[\tau] \right\}. \tag{1}$$

Defining the posterior probability process

$$\Pi_t := \mathbb{P}_{\pi}(\Theta = 1 | \mathscr{F}_t^X),$$

• Problem (1) can be written as

$$V(\pi) = \inf_{ au} \mathbb{E}_{\pi}[c au + \Pi_{ au} \wedge (1 - \Pi_{ au})]$$

where

$$d\Pi_t = \Pi_t (1 - \Pi_t) d\tilde{W}_t$$

Solution: optimal stopping in another coordinate.

• The minimised cost V:

$$V = \inf_{\tau,d} \left\{ \mathbb{P}(d=0,\Theta=1) + \mathbb{P}(d=1,\Theta=0) + c\mathbb{E}[\tau] \right\}. \tag{1}$$

Defining the posterior probability process

$$\Pi_t := \mathbb{P}_{\pi}(\Theta = 1 | \mathscr{F}_t^X),$$

• Problem (1) can be written as

$$V(\pi) = \inf_{ au} \mathbb{E}_{\pi}[c au + \Pi_{ au} \wedge (1 - \Pi_{ au})]$$

where

$$d\Pi_t = \Pi_t (1 - \Pi_t) d\tilde{W}_t$$

• Standard method: explicit solution: Shiryaev (1969).

Direct application: testing the unknown drift of a stock (GBM).

- Direct application: testing the unknown drift of a stock (GBM).
- What about an unknown volatility?

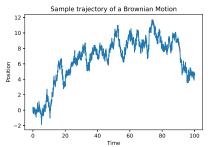
- Direct application: testing the unknown drift of a stock (GBM).
- What about an unknown volatility?

$$dX_t = \mu X_t dt + \Theta X_t dW_t$$

- Direct application: testing the unknown drift of a stock (GBM).
- What about an unknown volatility?

$$dX_t = \mu X_t dt + \Theta X_t dW_t$$

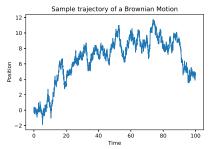
Not a valid question in continuous time!



- Direct application: testing the unknown drift of a stock (GBM).
- What about an unknown volatility?

$$dX_t = \mu X_t dt + \Theta X_t dW_t$$

Not a valid question in continuous time!

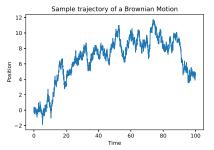


• Financial data is not really continuous.

- Direct application: testing the unknown drift of a stock (GBM).
- What about an unknown volatility?

$$dX_t = \mu X_t dt + \Theta X_t dW_t$$

Not a valid question in continuous time!



Financial data is not really continuous.

This motivates us to consider things in **discrete time**.

Question 1: what is the natural class of problems to study in discrete time?

Question 1: what is the natural class of problems to study in discrete time?

(In terms of composite testing, whole range of possibilities)

Question 1: what is the natural class of problems to study in discrete time?

(In terms of composite testing, whole range of possibilities)

• Or, what family of distributions do we consider?

Question 1: what is the natural class of problems to study in discrete time?

(In terms of composite testing, whole range of possibilities)

- Or, what family of distributions do we consider?
- Exponential family is the answer: Gaussian, Bernoulli, binomial, Poisson, exponential, beta, ...

$$f_X(x|\theta) = h(x) \exp\{\theta x - B(\theta)\},$$

Question 1: what is the natural class of problems to study in discrete time?

(In terms of composite testing, whole range of possibilities)

- Or, what family of distributions do we consider?
- Exponential family is the answer: Gaussian, Bernoulli, binomial, Poisson, exponential, beta, ...

$$f_X(x|\theta) = h(x) \exp{\{\theta x - B(\theta)\}},$$

Question 2: can we assign arbitrary distribution to the unknown parameter?

Question 1: what is the natural class of problems to study in discrete time?

(In terms of composite testing, whole range of possibilities)

- Or, what family of distributions do we consider?
- Exponential family is the answer: Gaussian, Bernoulli, binomial, Poisson, exponential, beta, ...

$$f_X(x|\theta) = h(x) \exp{\{\theta x - B(\theta)\}},$$

Question 2: can we assign arbitrary distribution to the unknown parameter?

• Explicit solutions?

Question 1: what is the natural class of problems to study in discrete time?

(In terms of composite testing, whole range of possibilities)

- Or, what family of distributions do we consider?
- Exponential family is the answer: Gaussian, Bernoulli, binomial, Poisson, exponential, beta, ...

$$f_X(x|\theta) = h(x) \exp{\{\theta x - B(\theta)\}},$$

Question 2: can we assign arbitrary distribution to the unknown parameter?

- Explicit solutions?
- Otherwise, what structural properties does the problem exhibit?

What are we building on?

Discrete time: popular in the 60s and 70s

- Studied on a case-by-case basis and rely on conjugate priors:
 Lindley and Barnett (1965), Moriguti and Robbins (1962).
- Focus on asymptotic behaviour:
 Schwartz (1962), Bickel (1973), Lai (1988).
- c.f. Sobel (1953), Alvo (1977), Cablio (1977).

Continuous time: many generalisations

- Finite horizon: Gapeev and Peskir (2004), Poisson: Peskir and Shiryaev (2000), multi-dimensional: Ekström and Wang (2022).
- Most literature uses binary priors (c.f. Zhitlukhin and Shiryaev (2011), Ekström and Vaicenavicius (2015), Ekström, Karatzas & Vaicenavicius (2022)).

Outline

- Introduction
 - Statistics & Optimal stopping
 - Motivation for us
- Sequential composite hypothesis testing
 - Set-up
 - Structural properties
- Sequential estimation
 - Set-up
 - Structural properties
- 4 Applications in control: an example

Discrete-time sequential testing

The general set-up:

• The tester observes X_1, X_2, \dots sequentially with cost c at each step.

Discrete-time sequential testing

The general set-up:

- The tester observes $X_1, X_2, ...$ sequentially with cost c at each step.
- X_k 's are drawn from a one-parameter exponential family depending on r.v. Θ : conditioning on $\Theta = u$, X_k 's are independent, and

$$\mathbb{P}(X_1 \in A | \Theta = u) = \int_A e^{ux - B(u)} v(dx).$$

Discrete-time sequential testing

The general set-up:

- The tester observes X_1, X_2, \dots sequentially with cost c at each step.
- X_k 's are drawn from a one-parameter exponential family depending on r.v. Θ : conditioning on $\Theta = u$, X_k 's are independent, and

$$\mathbb{P}(X_1 \in A | \Theta = u) = \int_A e^{ux - B(u)} v(dx).$$

- μ : (arbitrary) prior of the unknown parameter Θ
- Denote the support of μ by S, and $S^+ := S \cap \theta_0, \infty$).

Want to test:

 $H_0: \quad \Theta \leq \theta_0,$ $H_1: \quad \Theta > \theta_0,$

Want to test:

$$H_0: \ \Theta \leq \theta_0,$$

$$H_1: \quad \Theta > \theta_0,$$

• Let d = i represent H_i is accepted.

$$H_0: \Theta \leq \theta_0,$$

$$H_1: \quad \Theta > \theta_0,$$

- Let d = i represent H_i is accepted.
- Define the minimal cost

$$H_0: \Theta \leq \theta_0,$$

 $H_1: \Theta > \theta_0,$

- Let d = i represent H_i is accepted.
- Define the minimal cost

$$\mathbb{P}(d=1,\Theta \leq \theta_0) + \mathbb{P}(d=0,\Theta > \theta_0)$$

$$H_0: \Theta \leq \theta_0,$$

 $H_1: \Theta > \theta_0,$

- Let d = i represent H_i is accepted.
- Define the minimal cost.

$$\mathbb{P}(d=1,\Theta\leq heta_0) + \mathbb{P}(d=0,\Theta> heta_0) + c\mathbb{E}[au]$$

$$H_0: \Theta \leq \theta_0,$$

 $H_1: \Theta > \theta_0,$

- Let d = i represent H_i is accepted.
- Define the minimal cost.

$$\mathbb{P}(d=1,\Theta\leq heta_0) + \mathbb{P}(d=0,\Theta> heta_0) + c\mathbb{E}[au]$$

Set-up

Want to test:

$$H_0: \Theta \leq \theta_0,$$

 $H_1: \Theta > \theta_0.$

- Let d = i represent H_i is accepted.
- Define the minimal cost.

$$V:=\inf_{\tau,d}\left\{\mathbb{P}(d=1,\Theta\leq\theta_0)+\mathbb{P}(d=0,\Theta>\theta_0)+c\mathbb{E}[\tau]\right\}$$

Set-up

Want to test:

$$H_0: \Theta \leq \theta_0,$$

 $H_1: \Theta > \theta_0.$

- Let d = i represent H_i is accepted.
- Define the minimal cost

$$V:=\inf_{\tau,d}\left\{\mathbb{P}(d=1,\Theta\leq\theta_0)+\mathbb{P}(d=0,\Theta>\theta_0)+c\mathbb{E}[\tau]\right\}.$$

ullet Define the posterior probability process Π

$$\Pi_n := \mathbb{P}(\Theta > \theta_0 | \mathscr{F}_n^X),$$

with
$$\Pi_0 = \mu(S^+) = \pi$$
.

ullet Define the posterior probability process Π

$$\Pi_n := \mathbb{P}(\Theta > \theta_0 | \mathscr{F}_n^X),$$

with
$$\Pi_0 = \mu(S^+) = \pi$$
.

• Given τ ,

$$d = \begin{cases} 0 & \text{if } \Pi_{\tau} \leq 1/2 \\ 1 & \text{if } \Pi_{\tau} > 1/2, \end{cases}$$

ullet Define the posterior probability process Π

$$\Pi_n := \mathbb{P}(\Theta > \theta_0 | \mathscr{F}_n^X),$$

with
$$\Pi_0 = \mu(S^+) = \pi$$
.

• Given τ ,

$$d = \begin{cases} 0 & \text{if } \Pi_{\tau} \leq 1/2 \\ 1 & \text{if } \Pi_{\tau} > 1/2, \end{cases}$$

Consequently,

$$V = \inf_{ au \in \mathscr{T}} \mathbb{E} \left[\Pi_{ au} \wedge (1 - \Pi_{ au}) + c au
ight],$$

ullet Define the posterior probability process Π

$$\Pi_n := \mathbb{P}(\Theta > \theta_0 | \mathscr{F}_n^X),$$

with
$$\Pi_0 = \mu(S^+) = \pi$$
.

• Given τ .

$$d = \begin{cases} 0 & \text{if } \Pi_{\tau} \leq 1/2 \\ 1 & \text{if } \Pi_{\tau} > 1/2, \end{cases}$$

Consequently,

$$V = \inf_{ au \in \mathscr{T}} \mathbb{E}\left[\Pi_{ au} \wedge (1 - \Pi_{ au}) + c au\right],$$

Can we do Markovian embedding?

Properties of the □ process

• At time *n*, given $X_1 = x_1, \dots, X_n = x_n$, by the Bayes theorem,

$$\begin{split} & \mathbb{P}(\Theta > \theta_0 | X_1 = x_1, \dots, X_n = x_n) \\ & = \frac{\int_{S^+} \prod_{i=1}^n p_u(x_i) \mu(du)}{\int_{S} \prod_{i=1}^n p_u(x_i) \mu(du)} \\ & = \frac{\int_{S^+} \exp\{u \sum_{i=1}^n x_i - nB(u)\} \mu(du)}{\int_{S} \exp\{u \sum_{i=1}^n x_i - nB(u)\} \mu(du)}. \end{split}$$

Properties of the □ process

• At time n, given $X_1 = x_1, \dots, X_n = x_n$, by the Bayes theorem,

$$\begin{split} & \mathbb{P}(\Theta > \theta_0 | X_1 = x_1, \dots, X_n = x_n) \\ & = \frac{\int_{S^+} \prod_{i=1}^n p_u(x_i) \mu(du)}{\int_{S} \prod_{i=1}^n p_u(x_i) \mu(du)} \\ & = \frac{\int_{S^+} \exp\{u \sum_{i=1}^n x_i - nB(u)\} \mu(du)}{\int_{S} \exp\{u \sum_{i=1}^n x_i - nB(u)\} \mu(du)}. \end{split}$$

• Denoting $Y_n := \sum_{i=1}^n X_i$:

$$\Pi_n = q(n, Y_n).$$

where

$$q(n,y) := \frac{\int_{S^+} e^{uy - nB(u)} \mu(du)}{\int_{S} e^{uy - nB(u)} \mu(du)}.$$

Denote by

$$\mu_{n,y}(du) := \frac{e^{uy - nB(u)}\mu(du)}{\int_S e^{uy - nB(u)}\mu(du)}$$

the posterior distribution of Θ at time n conditional on $Y_n = y$.

Denote by

$$\mu_{n,y}(du) := \frac{e^{uy - nB(u)}\mu(du)}{\int_S e^{uy - nB(u)}\mu(du)}$$

the posterior distribution of Θ at time n conditional on $Y_n = y$.

Lemma

The function $y \mapsto q(n,y) : \mathbb{R} \to (0,1)$ is an increasing bijection for each fixed n.

Denote by

$$\mu_{n,y}(du) := \frac{e^{uy - nB(u)}\mu(du)}{\int_S e^{uy - nB(u)}\mu(du)}$$

the posterior distribution of Θ at time n conditional on $Y_n = y$.

Lemma

The function $y \mapsto q(n,y) : \mathbb{R} \to (0,1)$ is an increasing bijection for each fixed n.

We need the exponential family for the above to hold!

Denote by

$$\mu_{n,y}(du) := \frac{e^{uy - nB(u)}\mu(du)}{\int_S e^{uy - nB(u)}\mu(du)}$$

the posterior distribution of Θ at time n conditional on $Y_n = y$.

Lemma

The function $y \mapsto q(n,y) : \mathbb{R} \to (0,1)$ is an increasing bijection for each fixed n.

We need the exponential family for the above to hold!

Denote by

$$\mu_{n,y}(du) := \frac{e^{uy - nB(u)}\mu(du)}{\int_{S} e^{uy - nB(u)}\mu(du)}$$

the posterior distribution of Θ at time n conditional on $Y_n = y$.

Lemma

The function $y \mapsto q(n,y) : \mathbb{R} \to (0,1)$ is an increasing bijection for each fixed n.

We need the exponential family for the above to hold!

Remark

• Π is a Markov process.

Denote by

$$\mu_{n,y}(du) := \frac{e^{uy - nB(u)}\mu(du)}{\int_{S} e^{uy - nB(u)}\mu(du)}$$

the posterior distribution of Θ at time n conditional on $Y_n = y$.

Lemma

The function $y \mapsto q(n,y) : \mathbb{R} \to (0,1)$ is an increasing bijection for each fixed n.

We need the exponential family for the above to hold!

Remark

- Π is a Markov process.
- Knowing y at time n gives all the information of the posterior.

Denote by

$$\mu_{n,y}(du) := \frac{e^{uy - nB(u)}\mu(du)}{\int_{S} e^{uy - nB(u)}\mu(du)}$$

the posterior distribution of Θ at time n conditional on $Y_n = y$.

Lemma

The function $y \mapsto q(n,y) : \mathbb{R} \to (0,1)$ is an increasing bijection for each fixed n.

We need the exponential family for the above to hold!

Remark

- Π is a Markov process.
- Knowing y at time n gives all the information of the posterior.
- Refer the set $\{(n, y(n, \pi)), n \ge 0\}$ as the π -level curve.

Denote by

$$\mu_{n,y}(du) := \frac{e^{uy - nB(u)}\mu(du)}{\int_{S} e^{uy - nB(u)}\mu(du)}$$

the posterior distribution of Θ at time n conditional on $Y_n = y$.

Lemma

The function $y \mapsto q(n,y) : \mathbb{R} \to (0,1)$ is an increasing bijection for each fixed n.

We need the exponential family for the above to hold!

Remark

- Π is a Markov process.
- Knowing y at time n gives all the information of the posterior.
- Refer the set $\{(n, y(n, \pi)), n \ge 0\}$ as the π -level curve.

Define $\mathbb{P}_{n,\pi}(\cdot) := \mathbb{P}(\cdot|\Pi_n = \pi)$. The optimal stopping problem can be written as

$$V(n,\pi) = \inf_{\tau} \mathbb{E}_{n,\pi}[\Pi_{\tau+n} \wedge (1 - \Pi_{\tau+n}) + c\tau].$$

Define $\mathbb{P}_{n,\pi}(\cdot) := \mathbb{P}(\cdot|\Pi_n = \pi)$. The optimal stopping problem can be written as

$$V(n,\pi) = \inf_{\tau} \mathbb{E}_{n,\pi} [\Pi_{\tau+n} \wedge (1 - \Pi_{\tau+n}) + c\tau].$$

Lemma (Dynamic programming)

The value function $V(n,\pi)$ satisfies

$$V(n-1,\pi) = \min\{\pi \wedge (1-\pi), c + \mathbb{E}_{n-1,\pi}[V(n,\Pi_n)]\}.$$

Define $\mathbb{P}_{n,\pi}(\cdot) := \mathbb{P}(\cdot|\Pi_n = \pi)$. The optimal stopping problem can be written as

$$V(n,\pi) = \inf_{\tau} \mathbb{E}_{n,\pi} [\Pi_{\tau+n} \wedge (1 - \Pi_{\tau+n}) + c\tau].$$

Lemma (Dynamic programming)

The value function $V(n,\pi)$ satisfies

$$V(n-1,\pi) = \min\{\pi \wedge (1-\pi), c + \mathbb{E}_{n-1,\pi}[V(n,\Pi_n)]\}.$$

Lemma (Preservation of concavity)

Let $f:[0,1]\to [0,\infty)$ be a concave function. Then $\pi\mapsto \mathbb{E}_{n,\pi}[f(\Pi_{n+1})]$ is concave on (0,1).

Theorem (Concavity)

The function $\pi \mapsto V(n,\pi)$ is concave for each fixed $n \ge 0$.

Introduce now

• The continuation region \mathscr{C} :

$$\mathscr{C}:=\{(n,\pi)\in\mathbb{N}_0\times[0,1]:V(n,\pi)<\pi\wedge(1-\pi)\},$$

• The stopping region \mathscr{D} by

$$\mathscr{D} := \{(n,\pi) \in \mathbb{N}_0 \times [0,1] : V(n,\pi) = \pi \wedge (1-\pi)\}.$$

• The stopping time

$$\tau^* := \inf\{k \ge 0 : (n+k, \Pi_{n+k}) \in \mathscr{D}\}\$$

is an optimal strategy.

The continuation region is of the form $(b_1(n), b_2(n))$

Main result 2: concentration of the posterior

The posterior distribution squeezes in

If $a < \theta_0 < b$, then

$$n \mapsto \mathbb{P}_{n,\pi}(\Theta \leq a)$$
 & $n \mapsto \mathbb{P}_{n,\pi}(\Theta > b)$

are decreasing.

Main result 2: concentration of the posterior

The posterior distribution squeezes in

If $a < \theta_0 < b$, then

$$n \mapsto \mathbb{P}_{n,\pi}(\Theta \leq a)$$
 & $n \mapsto \mathbb{P}_{n,\pi}(\Theta > b)$

are decreasing.

As a consequence, the π -level curves are spreading out.

An assumption

For any $\pi \in (0,1)$ and $n \ge m \ge 0$, the random variable $\Pi_{m+1} | \{ \Pi_m = \pi \}$ dominates $\Pi_{n+1} | \{ \Pi_n = \pi \}$ in convex order.

An assumption

For any $\pi \in (0,1)$ and $n \ge m \ge 0$, the random variable $\Pi_{m+1} | \{\Pi_m = \pi\}$ dominates $\Pi_{n+1} | \{\Pi_n = \pi\}$ in convex order.

• Assume the above holds. Then $V(n,\pi)$ is non-decreasing in n, and the boundaries are monotone.

An assumption

For any $\pi \in (0,1)$ and $n \ge m \ge 0$, the random variable $\Pi_{m+1} | \{\Pi_m = \pi\}$ dominates $\Pi_{n+1} | \{\Pi_n = \pi\}$ in convex order.

- Assume the above holds. Then $V(n,\pi)$ is non-decreasing in n, and the boundaries are monotone.
- But does this assumption always hold?

An assumption

For any $\pi \in (0,1)$ and $n \ge m \ge 0$, the random variable $\Pi_{m+1} | \{\Pi_m = \pi\}$ dominates $\Pi_{n+1} | \{\Pi_n = \pi\}$ in convex order.

- Assume the above holds. Then $V(n,\pi)$ is non-decreasing in n, and the boundaries are monotone.
- But does this assumption always hold? A: We don't know.

An assumption

For any $\pi \in (0,1)$ and $n \ge m \ge 0$, the random variable $\Pi_{m+1} | \{ \Pi_m = \pi \}$ dominates $\Pi_{n+1} | \{ \Pi_n = \pi \}$ in convex order.

- Assume the above holds. Then $V(n,\pi)$ is non-decreasing in n, and the boundaries are monotone.
- But does this assumption always hold? A: We don't know.

Time-monotonicity?

 Holds for some examples with any prior (Gaussian w. unknown mean, Bernoulli, Binomial).

An assumption

For any $\pi \in (0,1)$ and $n \ge m \ge 0$, the random variable $\Pi_{m+1} | \{ \Pi_m = \pi \}$ dominates $\Pi_{n+1} | \{ \Pi_n = \pi \}$ in convex order.

- Assume the above holds. Then $V(n,\pi)$ is non-decreasing in n, and the boundaries are monotone.
- But does this assumption always hold? A: We don't know.

Time-monotonicity?

- Holds for some examples with any prior (Gaussian w. unknown mean, Bernoulli, Binomial).
- Holds for some other examples for some families of priors (Exp, Gaussian w. unknown variance).

An assumption

For any $\pi \in (0,1)$ and $n \ge m \ge 0$, the random variable $\Pi_{m+1} | \{\Pi_m = \pi\}$ dominates $\Pi_{n+1} | \{\Pi_n = \pi\}$ in convex order.

- Assume the above holds. Then $V(n,\pi)$ is non-decreasing in n, and the boundaries are monotone.
- But does this assumption always hold? A: We don't know.

Time-monotonicity?

- Holds for some examples with any prior (Gaussian w. unknown mean, Bernoulli, Binomial).
- Holds for some other examples for some families of priors (Exp, Gaussian w. unknown variance).
- No counter-example is found.

An assumption

For any $\pi \in (0,1)$ and $n \ge m \ge 0$, the random variable $\Pi_{m+1} | \{ \Pi_m = \pi \}$ dominates $\Pi_{n+1} | \{ \Pi_n = \pi \}$ in convex order.

- Assume the above holds. Then $V(n,\pi)$ is non-decreasing in n, and the boundaries are monotone.
- But does this assumption always hold? A: We don't know.

Time-monotonicity?

- Holds for some examples with any prior (Gaussian w. unknown mean, Bernoulli, Binomial).
- Holds for some other examples for some families of priors (Exp, Gaussian w. unknown variance).
- No counter-example is found.

Conjecture: V is non-decreasing in n.

Outline

- Introduction
 - Statistics & Optimal stopping
 - Motivation for us
- Sequential composite hypothesis testing
 - Set-up
 - Structural properties
- Sequential estimation
 - Set-up
 - Structural properties
- Applications in control: an example

Introduction

Aside from testing, another natural question to ask is

What is the value of the unknown parameter?

Introduction

Aside from testing, another natural question to ask is

What is the value of the unknown parameter?

- Want to obtain an accurate estimate in the presence of cost.
- We can ask similar questions as in the testing problem. (remind the audience the questions)

Discrete-time sequential estimation

• The basic set-up is the same as in testing

Discrete-time sequential estimation

- The basic set-up is the same as in testing
- Formulate the stopping problem in another coordinate.

Discrete-time sequential estimation

- The basic set-up is the same as in testing
- Formulate the stopping problem in another coordinate.

The coordinate

Define the posterior estimate process:

$$\hat{\Theta}_n := \mathbb{E}\left[\Theta|\mathscr{F}_n^X\right].$$

Discrete-time sequential estimation

- The basic set-up is the same as in testing
- Formulate the stopping problem in another coordinate.

The coordinate

Define the posterior estimate process:

$$\hat{\Theta}_n := \mathbb{E}\left[\Theta|\mathscr{F}_n^X\right].$$

Want to minimize:

$$\mathbb{E}\left[(\Theta - \hat{\Theta}_{\tau})^2 + c\tau\right]$$

over stopping times.

Similarly, we are fine in this coordinate because

 $\hat{\Theta}_n = G_n(Y_n)$ is a strictly increasing bijection.

Similarly, we are fine in this coordinate because

 $\hat{\Theta}_n = G_n(Y_n)$ is a strictly increasing bijection.

Again, we need the exponential family for this to hold!

Similarly, we are fine in this coordinate because

$$\hat{\Theta}_n = G_n(Y_n)$$
 is a strictly increasing bijection.

Again, we need the exponential family for this to hold!

• Define $\Psi(n, \hat{\Theta}_n) = \text{Var}(\Theta | \mathscr{F}_n^X)$, then V can be written in the θ_0 coordinate:

$$V(n,\theta_0) = \inf_{\tau \in \mathscr{T}} \mathbb{E}_{n,\theta_0} [\Psi(n+\tau,\hat{\Theta}_{n+\tau}) + c\tau].$$

Similarly, we are fine in this coordinate because

$$\hat{\Theta}_n = G_n(Y_n)$$
 is a strictly increasing bijection.

Again, we need the exponential family for this to hold!

• Define $\Psi(n, \hat{\Theta}_n) = \text{Var}(\Theta | \mathscr{F}_n^X)$, then V can be written in the θ_0 coordinate:

$$V(n,\theta_0) = \inf_{\tau \in \mathscr{T}} \mathbb{E}_{n,\theta_0}[\Psi(n+\tau,\hat{\Theta}_{n+\tau}) + c\tau].$$

• Note that $M_n := \Psi(n, \hat{\Theta}_n) + \hat{\Theta}_n^2$ is a martingale, we can further write

$$V(n,\theta_0) = \Psi(n,\theta_0) + \inf_{\tau \in \mathscr{T}} \mathbb{E}_{n,\theta_0} \left[\sum_{i=0}^{\tau} \left(c - \left(\hat{\Theta}_{i+1}^2 - \hat{\Theta}_i^2 \right) \right) \right]$$

=: $\Psi(n,\theta_0) + v(n,\theta_0)$.

Main result: conditions for space-monotonicity

First-order stochastic dominance

If $\theta_0 \leq \tilde{\theta}_0$, then $\mathbb{P}(\hat{\Theta}_n^{\theta_0} \leq a) \geq \mathbb{P}(\hat{\Theta}_n^{\tilde{\theta}_0} \leq a)$, for all $a \in \mathbb{R}$ and all $n \geq 0$.

Main result: conditions for space-monotonicity

First-order stochastic dominance

If $\theta_0 \leq \tilde{\theta}_0$, then $\mathbb{P}(\hat{\Theta}_n^{\theta_0} \leq a) \geq \mathbb{P}(\hat{\Theta}_n^{\tilde{\theta}_0} \leq a)$, for all $a \in \mathbb{R}$ and all $n \geq 0$.

As a consequence,

Space-monotonicity of *v*

Assume that for all $k \ge 0$, the mapping

$$heta_0 \mapsto \mathbb{E}_{k, heta_0} \left[\hat{\Theta}_{k+1}^2 - heta_0^2
ight]$$

is non-decreasing, then the value function $v(n, \theta_0)$ is non-increasing in θ_0 for any fixed $n \ge 0$.

Main result: conditions for space-monotonicity

First-order stochastic dominance

If $\theta_0 \leq \tilde{\theta}_0$, then $\mathbb{P}(\hat{\Theta}_n^{\theta_0} \leq a) \geq \mathbb{P}(\hat{\Theta}_n^{\tilde{\theta}_0} \leq a)$, for all $a \in \mathbb{R}$ and all $n \geq 0$.

As a consequence,

Space-monotonicity of *v*

Assume that for all $k \ge 0$, the mapping

$$heta_0 \mapsto \mathbb{E}_{k, heta_0} \left[\hat{\Theta}_{k+1}^2 - heta_0^2
ight]$$

is non-decreasing, then the value function $v(n, \theta_0)$ is non-increasing in θ_0 for any fixed n > 0.

This implies a **one-sided** stopping boundary.

This is not a general result. It depends on both the prior and the observation.

This is not a general result. It depends on both the prior and the observation.

Some examples

- Bernoulli observations with any prior: not monotone.
- Exponential observations with a gamma prior: **monotone**.
- Gaussian observations with unknown variance and an inverse gamma prior: monotone.

This is not a general result. It depends on both the prior and the observation.

Some examples

- Bernoulli observations with any prior: not monotone.
- Exponential observations with a gamma prior: monotone.
- Gaussian observations with unknown variance and an inverse gamma prior: monotone.
- What about concavity? Not to be expected.

This is not a general result. It depends on both the prior and the observation.

Some examples

- Bernoulli observations with any prior: not monotone.
- Exponential observations with a gamma prior: **monotone**.
- Gaussian observations with unknown variance and an inverse gamma prior: monotone.
- What about concavity? Not to be expected.
- What about time-monotonicity? We have some partial results. e.g.

. .

The structure of continuation/stopping

Outline

- Introduction
 - Statistics & Optimal stopping
 - Motivation for us
- Sequential composite hypothesis testing
 - Set-up
 - Structural properties
- Sequential estimation
 - Set-up
 - Structural properties
- Applications in control: an example

An example in stochastic control: set-up

• Consider a seller who offers a product for sale.

- Consider a **seller** who offers a product for sale.
- The potential **buyers** arrive in a sequential fashion.

- Consider a seller who offers a product for sale.
- The potential buyers arrive in a sequential fashion.
- At time n, the seller offers a price p_n .

- Consider a **seller** who offers a product for sale.
- The potential buyers arrive in a sequential fashion.
- At time n, the seller offers a price p_n .
- The probability that p_n is accepted is the **demand**, D(p).

- Consider a seller who offers a product for sale.
- The potential buyers arrive in a sequential fashion.
- At time n, the seller offers a price p_n .
- The probability that p_n is accepted is the **demand**, D(p).
- But $D(\cdot)$ is unknown:

$$\mathbb{P}\left(D\left(\cdot\right)=D^{1}\left(\cdot\right)\right)=\pi=1-\mathbb{P}\left(D\left(\cdot\right)=D^{0}\left(\cdot\right)\right).$$

An example in stochastic control: set-up

- Consider a seller who offers a product for sale.
- The potential buyers arrive in a sequential fashion.
- At time n, the seller offers a price p_n .
- The probability that p_n is accepted is the **demand**, D(p).
- But $D(\cdot)$ is unknown:

$$\mathbb{P}\left(D\left(\cdot\right)=D^{1}\left(\cdot\right)\right)=\pi=1-\mathbb{P}\left(D\left(\cdot\right)=D^{0}\left(\cdot\right)\right).$$

The seller seeks to maximise the discounted profit:

$$V = \sup_{\{p_n\}_{n\geq 0}} \mathbb{E}\left[\sum_{n=0}^{\infty} e^{-rn} p_n D(p_n)\right].$$

An example in stochastic control: set-up

- Consider a seller who offers a product for sale.
- The potential **buyers** arrive in a sequential fashion.
- At time n, the seller offers a price p_n .
- The probability that p_n is accepted is the **demand**, D(p).
- But $D(\cdot)$ is unknown:

$$\mathbb{P}\left(D\left(\cdot\right)=D^{1}\left(\cdot\right)\right)=\pi=1-\mathbb{P}\left(D\left(\cdot\right)=D^{0}\left(\cdot\right)\right).$$

The seller seeks to maximise the discounted profit:

$$V = \sup_{\{p_n\}_{n\geq 0}} \mathbb{E}\left[\sum_{n=0}^{\infty} e^{-rn} p_n D(p_n)\right].$$

Economic & operations research literatures: incomplete learning, myopic strategy c.f. Mclennan 1984, Harrison 2012.

How does it relate to our setting?

How does it relate to our setting?

Observe that it is with Bernoulli observations with a Bernoulli prior:

$$\Theta = \begin{cases} 1, & D(\cdot) = D^{1}(\cdot), \\ 0, & D(\cdot) = D^{0}(\cdot). \end{cases}$$

How does it relate to our setting?

Observe that it is with Bernoulli observations with a Bernoulli prior:

$$\Theta = \begin{cases} 1, & D(\cdot) = D^{1}(\cdot), \\ 0, & D(\cdot) = D^{0}(\cdot). \end{cases}$$

• Define the posterior probability process

$$\Pi_n := \mathbb{P}\left(D(\cdot) = D^1(\cdot) | \mathscr{F}_n\right).$$

How does it relate to our setting?

Observe that it is with Bernoulli observations with a Bernoulli prior:

$$\Theta = \begin{cases} 1, & D(\cdot) = D^{1}(\cdot), \\ 0, & D(\cdot) = D^{0}(\cdot). \end{cases}$$

• Define the posterior probability process

$$\Pi_n := \mathbb{P}\left(D(\cdot) = D^1(\cdot) | \mathscr{F}_n\right).$$

The value can be written as

$$V(\pi) = \sup_{\{p_n\}_{n\geq 0}} \mathbb{E}_{\pi} \left[\sum_{n=0}^{\infty} e^{-rn} p_n \left(\Pi_n D^1(p_n) + (1 - \Pi_n) D^0(p_n) \right) \right].$$

And clearly satisfies

$$V(\pi) = \sup_{\rho} \left\{ e^{-r} \mathbb{E}_{\pi} \left[V(\Pi_1^{\rho}) \right] + \rho \left(\pi D^1(\rho) + (1-\pi) D^0(\rho) \right) \right\}.$$

And clearly satisfies

$$V(\pi) = \sup_{\rho} \left\{ e^{-r} \mathbb{E}_{\pi} \left[V(\Pi_1^{\rho}) \right] + \rho \left(\pi D^1(\rho) + (1-\pi) D^0(\rho) \right) \right\}.$$

A monotone sequence can then be constructed to find a fixed point, which coincides with V.

And clearly satisfies

$$V(\pi) = \sup_{p} \left\{ e^{-r} \mathbb{E}_{\pi} \left[V(\Pi_{1}^{p}) \right] + p \left(\pi D^{1}(p) + (1-\pi) D^{0}(p) \right) \right\}.$$

A monotone sequence can then be constructed to find a fixed point, which coincides with V.

Remark

• We use the preservation of convexity: f convex $\Longrightarrow \mathbb{E}_{\pi}[f(\Pi_1)]$ convex.

And clearly satisfies

$$V(\pi) = \sup_{p} \left\{ e^{-r} \mathbb{E}_{\pi} \left[V(\Pi_{1}^{p}) \right] + p \left(\pi D^{1}(p) + (1-\pi) D^{0}(p) \right) \right\}.$$

A monotone sequence can then be constructed to find a fixed point, which coincides with V.

Remark

- We use the preservation of convexity: f convex $\Longrightarrow \mathbb{E}_{\pi}[f(\Pi_1)]$ convex.
- The prior distribution can be relaxed to an arbitrary prior.

And clearly satisfies

$$V(\pi) = \sup_{p} \left\{ e^{-r} \mathbb{E}_{\pi} \left[V(\Pi_{1}^{p}) \right] + p \left(\pi D^{1}(p) + (1-\pi) D^{0}(p) \right) \right\}.$$

A monotone sequence can then be constructed to find a fixed point, which coincides with V.

Remark

- We use the preservation of convexity: f convex $\Longrightarrow \mathbb{E}_{\pi}[f(\Pi_1)]$
- The prior distribution can be relaxed to an arbitrary prior.
- The observation can be relaxed: not necessarily Bernoulli.

And clearly satisfies

$$V(\pi) = \sup_{p} \left\{ e^{-r} \mathbb{E}_{\pi} \left[V(\Pi_{1}^{p}) \right] + p \left(\pi D^{1}(p) + (1-\pi) D^{0}(p) \right) \right\}.$$

A monotone sequence can then be constructed to find a fixed point, which coincides with V.

Remark

- We use the preservation of convexity: f convex $\Longrightarrow \mathbb{E}_{\pi}[f(\Pi_1)]$ convex.
- The prior distribution can be relaxed to an arbitrary prior.
- The observation can be relaxed: not necessarily Bernoulli.

This leeds to some problems of "exploration-exploitation" type.

Summary

To summarise the talk:

- We study the Bayesian sequential testing and estimation problems in discrete time.
- The unknown parameter is taken from the exponential family.
- The prior can be arbitrary.
- In general, no explicit solutions. We are after structural properties.
- The problems we study open up doors to certain control problems.

Thank you for your attention!

Contact: yuqiong.wang@math.uu.se