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Statistics & Optimal stopping

Classical problem: Testing the unknown drift of a BM.

Observe the trajectory of a BM with unknown drift:

Xt = Θt +Wt .

where P(Θ = 1) = π = 1−P(Θ = 0), π ∈ (0,1).

Want to test: H1 : Θ = 1, H0 : Θ = 0, as accurately as possible.
Observation is not free: c > 0 per unit time of observation.
Need to test as fast as possible.
The time to stop observing is part of the decision.
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Applications in control: an example

Statistics & Optimal stopping
Motivation for us

Statistics & Optimal stopping
Solution: optimal stopping in another coordinate.

The minimised cost V :

V = inf
τ,d
{P(d = 0,Θ = 1) +P(d = 1,Θ = 0) + cE [τ]} . (1)

Defining the posterior probability process

Πt := Pπ (Θ = 1|FX
t ),

Problem (1) can be written as

V (π) = inf
τ
Eπ [cτ + Πτ ∧ (1−Πτ )]

where
dΠt = Πt(1−Πt)dW̃t ,

Standard method: explicit solution: Shiryaev (1969).
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Application in finance: unknown parameters

Direct application: testing the unknown drift of a stock (GBM).

What about an unknown volatility?

dXt = µXtdt + ΘXtdWt

– Not a valid question in continuous time!
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Financial data is not really continuous.
This motivates us to consider things in discrete time.
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Natural questions to ask

Question 1: what is the natural class of problems to study in
discrete time?

(In terms of composite testing, whole range of possibilities)
Or, what family of distributions do we consider?
Exponential family is the answer: Gaussian, Bernoulli, binomial,
Poisson, exponential, beta, . . .

fX (x |θ) = h(x)exp{θx−B(θ)},

Question 2: can we assign arbitrary distribution to the unknown
parameter?

Explicit solutions?
Otherwise, what structural properties does the problem exhibit?
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What are we building on?

Discrete time: popular in the 60s and 70s
Studied on a case-by-case basis and rely on conjugate priors:
Lindley and Barnett (1965), Moriguti and Robbins (1962).
Focus on asymptotic behaviour:
Schwartz (1962), Bickel (1973), Lai (1988).
c.f. Sobel (1953), Alvo (1977), Cablio (1977).

Continuous time: many generalisations
Finite horizon: Gapeev and Peskir (2004), Poisson: Peskir and Shiryaev
(2000), multi-dimensional: Ekström and Wang (2022).
Most literature uses binary priors (c.f. Zhitlukhin and Shiryaev (2011),
Ekström and Vaicenavicius (2015), Ekström, Karatzas & Vaicenavicius
(2022)).
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Discrete-time sequential testing

The general set-up:

The tester observes X1,X2, ... sequentially with cost c at each step.

Xk ’s are drawn from a one-parameter exponential family depending
on r.v. Θ: conditioning on Θ = u, Xk ’s are independent, and

P(X1 ∈ A|Θ = u) =

∫
A
eux−B(u)

ν(dx).

µ: (arbitrary) prior of the unknown parameter Θ

Denote the support of µ by S , and S+ := S ∩θ0,∞).
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Set-up

Want to test:

H0 : Θ≤ θ0,

H1 : Θ > θ0,

Let d = i represent Hi is accepted.
Define the minimal cost

V := inf
τ,d
{P(d = 1,Θ≤ θ0) +P(d = 0,Θ > θ0) + cE[τ]} .
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Set-up
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Reformulation in the π coordinate

Define the posterior probability process Π

Πn := P(Θ > θ0|FX
n ),

with Π0 = µ(S+) = π.

Given τ,

d =

{
0 if Πτ ≤ 1/2
1 if Πτ > 1/2,

Consequently,
V = inf

τ∈T
E [Πτ ∧ (1−Πτ ) + cτ] ,

Can we do Markovian embedding?
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Set-up
Structural properties

Properties of the Π process

At time n, given X1 = x1, . . . ,Xn = xn, by the Bayes theorem,

P(Θ > θ0|X1 = x1, . . . ,Xn = xn)

=

∫
S+

∏n
i=1 pu(xi )µ(du)∫

S

∏n
i=1 pu(xi )µ(du)

=

∫
S+ exp{u

∑n
i=1 xi −nB(u)}µ(du)∫

S exp{u
∑n

i=1 xi −nB(u)}µ(du)
.

Denoting Yn :=
∑n

i=1Xi :

Πn = q(n,Yn).

where

q(n,y) :=

∫
S+ euy−nB(u)µ(du)∫
S e

uy−nB(u)µ(du)
.

Yuqiong Wang - Uppsala University 12 / 31
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Set-up
Structural properties

Parameterize the posterior distribution

Denote by

µn,y (du) :=
euy−nB(u)µ(du)∫
S e

uy−nB(u)µ(du)

the posterior distribution of Θ at time n conditional on Yn = y .

Lemma

The function y 7→ q(n,y) : R→ (0,1) is an increasing bijection for each fixed n.

We need the exponential family for the above to hold!

Remark

Π is a Markov process.

Knowing y at time n gives all the information of the posterior.
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Sequential estimation
Applications in control: an example

Set-up
Structural properties

Main result 1: concavity

Define Pn,π (·) := P(·|Πn = π). The optimal stopping problem can be
written as

V (n,π) = inf
τ
En,π [Πτ+n ∧ (1−Πτ+n) + cτ].

Lemma (Dynamic programming)

The value function V (n,π) satisfies

V (n−1,π) = min{π ∧ (1−π),c +En−1,π [V (n,Πn)]}.

Lemma (Preservation of concavity)

Let f : [0,1]→ [0,∞) be a concave function. Then π 7→ En,π [f (Πn+1)] is
concave on (0,1).
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Introduction
Sequential composite hypothesis testing

Sequential estimation
Applications in control: an example

Set-up
Structural properties

Main result 1: concavity

Define Pn,π (·) := P(·|Πn = π). The optimal stopping problem can be
written as

V (n,π) = inf
τ
En,π [Πτ+n ∧ (1−Πτ+n) + cτ].

Lemma (Dynamic programming)

The value function V (n,π) satisfies

V (n−1,π) = min{π ∧ (1−π),c +En−1,π [V (n,Πn)]}.

Lemma (Preservation of concavity)

Let f : [0,1]→ [0,∞) be a concave function. Then π 7→ En,π [f (Πn+1)] is
concave on (0,1).

Yuqiong Wang - Uppsala University 14 / 31



Introduction
Sequential composite hypothesis testing

Sequential estimation
Applications in control: an example

Set-up
Structural properties

Main result 1: concavity

Define Pn,π (·) := P(·|Πn = π). The optimal stopping problem can be
written as

V (n,π) = inf
τ
En,π [Πτ+n ∧ (1−Πτ+n) + cτ].

Lemma (Dynamic programming)

The value function V (n,π) satisfies

V (n−1,π) = min{π ∧ (1−π),c +En−1,π [V (n,Πn)]}.

Lemma (Preservation of concavity)

Let f : [0,1]→ [0,∞) be a concave function. Then π 7→ En,π [f (Πn+1)] is
concave on (0,1).

Yuqiong Wang - Uppsala University 14 / 31



Introduction
Sequential composite hypothesis testing

Sequential estimation
Applications in control: an example

Set-up
Structural properties

Main result 1: concavity

Theorem (Concavity)

The function π 7→ V (n,π) is concave for each fixed n ≥ 0.

Introduce now
The continuation region C :

C := {(n,π) ∈ N0× [0,1] : V (n,π) < π ∧ (1−π)},

The stopping region D by

D := {(n,π) ∈ N0× [0,1] : V (n,π) = π ∧ (1−π)}.

The stopping time

τ
∗ := inf{k ≥ 0 : (n+k ,Πn+k) ∈D}

is an optimal strategy.
Yuqiong Wang - Uppsala University 15 / 31
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The continuation region is of the form (b1(n),b2(n))
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Main result 2: concentration of the posterior

The posterior distribution squeezes in
If a< θ0 < b, then

n 7→ Pn,π (Θ≤ a) & n 7→ Pn,π (Θ > b)

are decreasing.

As a consequence, the π−level curves are spreading out.
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Set-up
Structural properties

Monotonicity in time

An assumption

For any π ∈ (0,1) and n ≥m ≥ 0, the random variable Πm+1|{Πm = π}
dominates Πn+1|{Πn = π} in convex order.

Assume the above holds. Then V (n,π) is non-decreasing in n, and the
boundaries are monotone.

But does this assumption always hold? A: We don’t know.

Time-monotonicity?

Holds for some examples with any prior (Gaussian w. unknown mean,
Bernoulli, Binomial).

Holds for some other examples for some families of priors (Exp, Gaussian
w. unknown variance).

No counter-example is found.

Conjecture: V is non-decreasing in n.

Yuqiong Wang - Uppsala University 18 / 31
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Introduction

Aside from testing, another natural question to ask is

What is the value of the unknown parameter?

Want to obtain an accurate estimate in the presence of cost.
We can ask similar questions as in the testing problem. (remind the
audience the questions)

Yuqiong Wang - Uppsala University 20 / 31
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Discrete-time sequential estimation

The basic set-up is the same as in testing

Formulate the stopping problem in another coordinate.

The coordinate
Define the posterior estimate process:

Θ̂n := E
[
Θ|FX

n

]
.

Want to minimize:
E
[
(Θ− Θ̂τ )2 + cτ

]
over stopping times.
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Markovian embedding

Similarly, we are fine in this coordinate because

Θ̂n = Gn(Yn) is a strictly increasing bijection.

Again, we need the exponential family for this to hold!
Define Ψ(n,Θ̂n) = Var(Θ|FX

n ), then V can be written in the θ0
coordinate:

V (n,θ0) = inf
τ∈T

En,θ0 [Ψ(n+ τ,Θ̂n+τ ) + cτ].

Note that Mn := Ψ(n,Θ̂n) + Θ̂2
n is a martingale, we can further write

V (n,θ0) = Ψ(n,θ0) + inf
τ∈T

En,θ0

[
τ∑

i=0

(
c−
(

Θ̂2
i+1− Θ̂2

i

))]
=: Ψ(n,θ0) +v(n,θ0).

Yuqiong Wang - Uppsala University 22 / 31
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Main result: conditions for space-monotonicity

First-order stochastic dominance

If θ0 ≤ θ̃0, then P(Θ̂θ0
n ≤ a)≥ P(Θ̂θ̃0

n ≤ a), for all a ∈ R and all n ≥ 0.

As a consequence,

Space-monotonicity of v
Assume that for all k ≥ 0, the mapping

θ0 7→ Ek,θ0

[
Θ̂2

k+1−θ
2
0

]
is non-decreasing, then the value function v(n,θ0) is non-increasing in θ0
for any fixed n ≥ 0.

This implies a one-sided stopping boundary.

Yuqiong Wang - Uppsala University 23 / 31
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Monotonicity in Space

This is not a general result. It depends on both the prior and the
observation.

Some examples
Bernoulli observations with any prior: not monotone.
Exponential observations with a gamma prior: monotone.
Gaussian observations with unknown variance and an inverse gamma
prior: monotone.

What about concavity? Not to be expected.
What about time-monotonicity? We have some partial results. e.g.
. . .

Yuqiong Wang - Uppsala University 24 / 31
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Dynamic pricing under a binary prior
An example in stochastic control: set-up

Consider a seller who offers a product for sale.
The potential buyers arrive in a sequential fashion.
At time n, the seller offers a price pn.
The probability that pn is accepted is the demand, D(p).
But D(·) is unknown:

P
(
D (·) = D1 (·)

)
= π = 1−P

(
D (·) = D0 (·)

)
.

The seller seeks to maximise the discounted profit:

V = sup
{pn}n≥0

E

[
∞∑

n=0

e−rnpnD(pn)

]
.

Economic & operations research literatures: incomplete learning, myopic
strategy . . . . c.f. Mclennan 1984, Harrison 2012.
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Dynamic pricing under a binary prior

How does it relate to our setting?

Observe that it is with Bernoulli observations with a Bernoulli prior:

Θ =

{
1, D (·) = D1 (·) ,
0, D (·) = D0 (·) .

Define the posterior probability process

Πn := P
(
D (·) = D1 (·) |Fn

)
.

The value can be written as

V (π) = sup
{pn}n≥0

Eπ

[
∞∑

n=0

e−rnpn
(
ΠnD

1(pn) + (1−Πn)D0(pn)
)]

.
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Dynamic pricing under a binary prior

And clearly satisfies

V (π) = sup
p

{
e−rEπ

[
V (Πp

1)
]

+p
(
πD1(p) + (1−π)D0(p)

)}
.

A monotone sequence can then be constructed to find a fixed point,
which coincides with V .

Remark
We use the preservation of convexity: f convex =⇒ Eπ [f (Π1)]
convex.
The prior distribution can be relaxed to an arbitrary prior.
The observation can be relaxed: not necessarily Bernoulli.

This leeds to some problems of ”exploration-exploitation” type.
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Summary

To summarise the talk:

We study the Bayesian sequential testing and estimation problems
in discrete time.
The unknown parameter is taken from the exponential family.
The prior can be arbitrary.
In general, no explicit solutions. We are after structural properties.
The problems we study open up doors to certain control problems.
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Thank you for your attention!

Contact: yuqiong.wang@math.uu.se
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