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Introduction
Problem formulation and results

Some remarks

Stopping with incomplete information

Optimal stopping problems often concern:

V = sup
τ

E[G (Xτ )].

Usually uncertainty is associated with the assumptions:
– Is X a Gaussian with mean 0 or mean 1?
Combine optimal stopping and filtering theory: optimising while
learning.
Applications: e.g. statistics.
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Introduction
Problem formulation and results

Some remarks

Sequential testing & Optimal stopping

Classical problem: Testing the unknown drift of a BM.

Observe the trajectory of a BM with unknown drift:

Xt = Θt +Wt .

where P(Θ = 1) = π = 1−P(Θ = 0), π ∈ (0,1).

Want to test: H1 : Θ = 1, H0 : Θ = 0, as accurately as possible.
Observation is not free: c > 0 per unit time of observation.
Need to test as fast as possible.
The time to stop observing is part of the decision.
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Introduction
Problem formulation and results

Some remarks

Statistics & Optimal stopping

The minimised cost V :

V = inf
τ,d
{P(d = 0,Θ = 1) +P(d = 1,Θ = 0) + cE [τ]} . (1)

Solution: embed in another coordinate, solves a free-boundary
problem.
Defining the posterior probability process

Πt := Pπ (Θ = 1|FX
t ),

Problem (1) can be written as

V (π) = inf
τ
Eπ [cτ + Πτ ∧ (1−Πτ )]

where
dΠt = Πt(1−Πt)dW̃t ,

Standard method: explicit solution: Shiryaev (1969).
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Motivation: knock-out tournament design
Football, table tennis,. . .

Children game, sorting:

Yuqiong Wang - Uppsala University Optimal tournament design in continuous time 7 / 17



Introduction
Problem formulation and results

Some remarks

Motivation: knock-out tournament design
Football, table tennis,. . .

Children game, sorting:

Yuqiong Wang - Uppsala University Optimal tournament design in continuous time 7 / 17



Introduction
Problem formulation and results

Some remarks

Motivation: knock-out tournament design

The behavior of the players are often associated with some
uncertainty.

When a match is played, we can observe its “behavior” as a
continuous process.
Each unit time of observation costs c > 0.
Question: to single out the best player, how long time shall we
observe each round? Should we observe the first stages as long as
the final?

We study a continuous-time football-type game with 2n players.
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Introduction
Problem formulation and results

Some remarks

Problem formulation
Consider a game of 4 players. Want to minimise the probability of
“knocking out” the best player, with little observation cost.

Assumptions:
There is a distinct rank.
Each match is a Brownian motion

X ij
t = Θij t +W ij

t ,

where

Θij =

{
1
2 , if i is better than j ,

− 1
2 , if j is better than i ,

Initially, we have a uniform prior distribution on

1
2
3
4

 ,


1
2
4
3

 , . . . ,


4
3
2
1


 , (24 configurations)
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Introduction
Problem formulation and results

Some remarks

The semi-finals

Define Πij
t := P(Θij = 1

2 |X
ij
t )

Important assumption: symmetry.

The games in the same round uses the same strategy. i.e.,

τ
12
b := inf{t : Π12

t /∈ (b,1−b)},

and
τ

34
b := inf{t : Π34

t /∈ (b,1−b)}.

for some chosen strategy b ∈ (0, 1
2 ).

Cost of the semi-finals:

E 1
2

[
c
(
τ

12
b + τ

34
b

)]
= 2E 1

2

[
cτ

12
b

]
.

This cost solves an ODE for a chosen b.
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Introduction
Problem formulation and results

Some remarks

The semi-finals

Assume that player 1 and player 3 have won their games, i.e.,

eX
12
τ

1+ eX
12
τ

= 1−b =
eX

34
τ

1+ eX
34
τ

.

We consider the final: the “regret” is

a = P(player 2 or 4 is the best|X 12
t = x12,X

34
t = x34)

with x12 = x34 =− ln( b
1−b ).

We can show that
a = b.
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Introduction
Problem formulation and results

Some remarks

The final

We optimize:

inf
τ
E 1

2

[
a+ (1−a)

(
Π13

τ ∧
(
1−Π13

τ

)
+ cτ

)]
=b+ (1−b)inf

τ
E 1

2

[(
Π13

τ ∧
(
1−Π13

τ

)
+

c

1−b
τ

)]
=b+ (1−b)A(b).

As a solution to the Shiryaev problem,

τ
13
∗ := inf{t : Π13

t /∈ (B,1−B)},

where B = B(b) and B ∈ (0, 1
2 ).
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Introduction
Problem formulation and results

Some remarks

Optimising the tournament

Summing up the cost of the semi-final and the final, we seek b to
optimise

2cE 1
2

[τ12
b ] +b+ (1−b)A(b).

with some calculations, it turns out we look for a pair
(b,B) ∈ (0, 1

2 )× (0, 1
2 ) that{

ψ ′(b) = 1−B
4c ,

ψ ′(B) = 1−b
2c .

where ψ(x) = (1−2x) ln( x
1−x ).

ψ being concave implies that

0< B < b <
1
2
.
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Problem formulation and results

Some remarks

Some remarks

In other words, don’t collect too much information in the semi-finals!

The result generalises to 2n players, and this monotonicity holds.

Other generalizations?
Asymmetric strategies? The whole problem becomes highly
asymmetric.
King of the hill problem?
Non-knock-out systems: is Monrad system the best?
Sorting with uncertainty?

Many possibilities. . .
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Some remarks

Thank you for your attention!

Contact: yuqiong.wang@math.uu.se
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