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Motivation: a simple hiring game

@ Two companies interview a candidate and observe respectively:
X} =ot+ W,
X2 = ot+ W2,

where W', W2 independent.
@ 0 is the “true” ability level. e.g., 6 € {1,—1}, “strong/weak” candidate.

@ At any time, the companies can choose to stop the interview process
and hire the candidate.

@ When hired, the company gain 6.
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Motivation: a hiring game

@ Problem: there is only one candidate - competition in the hiring market.
@ Companies must act before their competitor:

Ji = E[G]I‘HSTZ]?
Jo =E[0L <]

@ Companies also observes the inaction of the competitor.

@ Want to preempty each other, but the inaction of the competitor also
affects their belief.

This game is difficult to solve. However, from a single stopper perspective:
@ Opportunities to stop would disappear (random time horizon).
@ The rate of disappearing depends on the state 6.

It motivates us to consider problems with state-dependent random horizon.
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Problem formulation

The ingredients of our problem:

@ Consider Bernoulli random variable 6
Pr(06=1)=n=1-Pr(6=0),
and Brownian motion W independent of 6.
@ Let random time y depend on 6, and be independent of W:
where F; continuous, non-increasing, F;(0) = 1.
@ Let the underlying X be a diffusion that depend on 6:
aX; = u(X,0)dt+o(X;)dW,

and denote p;(x) = u(x,i),i=0,1.

@ Let the payoff g,h: [0,) x R x {0,1} depend on 6, and denote
gi(t.x) := g(t,x,i) and i(t,x) := h(t, x. ).
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Problem formulation

@ We consider the following problem:

V= sup Eg|g(7,Xc,0)1(r0p) +h(7, Xy, 0)1 (1593 |- (1)

e TXY

— F#X7: generated by X and 1.5y,
—7X7: the set of ZX7-stopping time.
@ Note that
e g(t,x,0)=g(t,0), h(t,x,0)=h(t 06): statistical problems,

e g(t,x,0)=g(t,x), h(t,x,0)=h(t,x): financial problems,
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Incomplete to complete information

@ Observe that:

V= sup Ex|g(7,X:,0)1 11y +N(7. X, 0)1 15y | = V. @)

e TX

@ Define the conditional probability process:

Ny :=Pr(6 =1.7)

We have
V. = sup Ex|go(s, Xe)(1 —Me)Fo(v) + 1 (7. Xe)1:Fi (<) @3)

TeTX

— [ ho(t X001 =)o)~ [ it XNuaFy ().

Moreover, if t € X is optimal in (2), then it is also optimal in (1).
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Incomplete to complete information

@ The pair (X, ) satisfies:

{ aX = (Ho(Xe) + (11 (Xe) — o (X))Me) alt + 5(X;)d W,
dn = o(Xy)Me(1 - Ny) dWy,

where o(x) = (u1(x) — to(x)) /0 (x).
@ The process

/t gc(1§t5 /t G(l(t) (HO(Xs)+(;,L1 (XS)_“O(Xs))I_lS) ds

is the innovation process (a Pz-Brownian motion).
@ The process ¢ := satlsfles

do; = o(X)Pe(0(X;)N; dt + d W) (4)

with initial condition &y = ¢ := /(1 —x).
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A measure change

For any t > 0, denote by IP; ; the measure P, restricted to %, m € [0,1]. We

then have
dPoy 1+9¢

dPr;  1+®;

@ Under Py, (X, ®) satisfies
aX; = po(Xt) dt+ o(Xt) dW;
d¢[ = (D(X[)q)tth

@ Introduce the process
_ k()

I 6
&y FolD) b4, (6)
the likelihood process on {y > t}.
@ o7 satisfies
dos = %d);’ di(1) + o(X)O2dW;,  ©F = @

where £(t) = F;(t)/ Fo(t).
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A measure change

Theorem

Denote by

Vo= sup Eo|Fo(e) (Golr. o) +.61 (7. X)) ™)
teTX

/ ho(t, X dFo(1) — / i" gm £ X)) 02 dF; (1)),

where (X, ®°) is given by (5) and (6). Then V =v/(1+ ¢), where
o =mn/(1—nx). Moreover, ifte X is an optimal stopping in (7), then it is
also optimal in the original problem (1).

The embedding: v = v(t,x, ¢).
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Three motivating examples

@ We give 3 examples in one-dimension,
@ that reduces to problems only °—dependent,
@ For solvability, assume

Fi(t)=Pz(y>tlo=i)=e 4, =01,
with 2,0711 >0.



Examples
[e]e] lelelele]e]

1. The hiring problem with a dumb competitor

@ Hire a person, strong/weak:
Xt =p(0)t+oW;

with 1£(0) < p(1).



Examples
[e]e] lelelele]e]

1. The hiring problem with a dumb competitor

@ Hire a person, strong/weak:
Xt =p(0)t+oW;

with 1£(0) < p(1).
@ Benefit of hiring:

—elc ifO=0
g(t’x’e)_{ ed ifo=1



Examples
[e]e] lelelele]e]

1. The hiring problem with a dumb competitor

@ Hire a person, strong/weak:
Xt =p(0)t+oW;

with 1£(0) < p(1).
@ Benefit of hiring:

—elc ifO=0
g(t’x’e)_{ ed ifo=1

@ Survival probabilities: exponential, with 15 < 4.



Examples
[e]e] lelelele]e]

1. The hiring problem with a dumb competitor

@ Hire a person, strong/weak:
Xt =p(0)t+oW;
with 1£(0) < p(1).
@ Benefit of hiring:

—elc ifO=0
g(t’x’e)_{ ed ifo=1

@ Survival probabilities: exponential, with 15 < 4.
@ The stopping problem:

V= sup Eg [e*” <d1{e:1}—01{e:o}>1{r<7}]'

TeTXY
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1. The hiring problem with a dumb competitor

@ Rewrite:

V= sup E° [e*’%)f (®2d — c)] :
where ¢¢ is a GBM:
doF = — (A1 — Ag)d; dt + wd; dW;, o5 = 0.

@ The value function:

= i e (0 G = 155 Vo)

@ VAT s the value of the American call option with underlying ¢° and
strike &:
d
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2. Closing a short position under recall risk

@ Consider a short position in
dX; = u(6)X;dt + o X;dW;

with u(0) < pu(1).
@ The random horizon corresponds to a time when the position is
recalled: g > 0= 44.

@ The payoffs are g(t,x,0) = h(t,x,0) = xe", and

V= inf Ez[e ™" Xcny]

e TXY

where u(0) < r < u(1).
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3. Sequential testing with random horizon

@ Let Xt = 9t+GWt.
@ Consider a sequential testing problem of minimising
IP(6 # d) + cE[7]
with random horizon.
@ where o > 0= 14.

@ The value function

V= inf E[ﬁfAU —ﬁ7)+cr},

e TXY
where

ng, t<y,

PN X,
nﬁmeﬂy,ﬁ{o >y
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e TXY

_ H 0 o t )
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@ where
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@ Define the blue part as U(¢), which solves
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V= inf Ex [(ng A(1=N3) +67) 1 oy + 11 {m}}
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@ where
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Future work

@ Going back to the game setting:

— Search for results other than just numerics.
— Identify examples that are study-able.

@ Grab It Before It's Gone: Testing Uncertain Rewards under a Stochastic
Deadline, Campbell et al (2025).
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Thank you!

Our paper: Ekstrdm and Wang, “Stopping problems with an
unknown state”. J. Appl. Probab (2024)



	Introduction and problem formulation
	Reformulation: filtering theory
	Examples
	Future work

