

Dynkin ghost games with asymmetry and consolation

Yuqiong Wang | yuqw@umich.edu

Joint work with Erik Ekström

Department of Mathematics
University of Michigan

Vienna Congress on Mathematical Finance (VCMF 2025)

July 10, 2025

Outline

1 Motivation

2 Problem formulation and our main result

3 Examples

Let us first play a game

- Scenario 1: No competition.
- Scenario 2: Certain competition.
- Scenario 3: Uncertain competition.

Let us first play a game

- Scenario 1: No competition.
- Scenario 2: Certain competition.
- Scenario 3: Uncertain competition.

Let us first play a game

- Scenario 1: No competition.
- Scenario 2: Certain competition.
- Scenario 3: Uncertain competition.

Two motivating examples

- **Auction:**

- You don't know if the competitor exists, unless they act.
- Preemption type.

- **Possible investment opportunities:**

- Second one to stop gets a slightly worse contract.
- Different costs for different companies.

This motivates us to study “ghost” games with with asymmetry and consolation.

Two motivating examples

- **Auction:**

- You don't know if the competitor exists, unless they act.
- Preemption type.

- **Possible investment opportunities:**

- Second one to stop gets a slightly worse contract.
- Different costs for different companies.

This motivates us to study “ghost” games with with asymmetry and consolation.

Two motivating examples

- **Auction:**

- You don't know if the competitor exists, unless they act.
- Preemption type.

- **Possible investment opportunities:**

- Second one to stop gets a slightly worse contract.
- Different costs for different companies.

This motivates us to study “ghost” games with with asymmetry and consolation.

Two motivating examples

- **Auction:**
 - You don't know if the competitor exists, unless they act.
 - Preemption type.
- **Possible investment opportunities:**
 - Second one to stop gets a slightly worse contract.
 - Different costs for different companies.

This motivates us to study “ghost” games with with asymmetry and consolation.

Two motivating examples

- **Auction:**
 - You don't know if the competitor exists, unless they act.
 - Preemption type.
- **Possible investment opportunities:**
 - Second one to stop gets a slightly worse contract.
 - Different costs for different companies.

This motivates us to study “ghost” games with with asymmetry and consolation.

Outline

1 Motivation

2 Problem formulation and our main result

3 Examples

Playing a game with a ghost

- Consider a two-player non-zero-sum Dynkin game.
- Player 1 and 2 observes the same process X (continuous, strong Markov), and each chooses a time to stop: γ_1, γ_2 .
- **Key feature 1: Uncertain competition.** Each player is uncertain about the existence of a competitor.

θ_i = "Player i has competition" $\in \{0, 1\}$, for $i \in \{1, 2\}$.

- We define

$$\hat{\gamma}_{3-i} := \begin{cases} \gamma_{3-i} & \text{on } \{\theta_i = 1\} \\ \infty & \text{on } \{\theta_i = 0\}. \end{cases}$$

Playing a game with a ghost

- Consider a two-player non-zero-sum Dynkin game.
- Player 1 and 2 observes the same process X (continuous, strong Markov), and each chooses a time to stop: γ_1, γ_2 .
- Key feature 1: Uncertain competition.** Each player is uncertain about the existence of a competitor.

θ_i = "Player i has competition" $\in \{0, 1\}$, for $i \in \{1, 2\}$.

- We define

$$\hat{\gamma}_{3-i} := \begin{cases} \gamma_{3-i} & \text{on } \{\theta_i = 1\} \\ \infty & \text{on } \{\theta_i = 0\}. \end{cases}$$

Playing a game with a ghost

- Consider a two-player non-zero-sum Dynkin game.
- Player 1 and 2 observes the same process X (continuous, strong Markov), and each chooses a time to stop: γ_1, γ_2 .
- Key feature 1: Uncertain competition.** Each player is uncertain about the existence of a competitor.

θ_i = "Player i has competition" $\in \{0, 1\}$, for $i \in \{1, 2\}$.

- We define

$$\hat{\gamma}_{3-i} := \begin{cases} \gamma_{3-i} & \text{on } \{\theta_i = 1\} \\ \infty & \text{on } \{\theta_i = 0\}. \end{cases}$$

Playing a game with a ghost

- Consider a two-player non-zero-sum Dynkin game.
- Player 1 and 2 observes the same process X (continuous, strong Markov), and each chooses a time to stop: γ_1, γ_2 .
- Key feature 1: Uncertain competition.** Each player is uncertain about the existence of a competitor.

θ_i = "Player i has competition" $\in \{0, 1\}$, for $i \in \{1, 2\}$.

- We define

$$\hat{\gamma}_{3-i} := \begin{cases} \gamma_{3-i} & \text{on } \{\theta_i = 1\} \\ \infty & \text{on } \{\theta_i = 0\}. \end{cases}$$

Playing a game with a ghost

- Consider a two-player non-zero-sum Dynkin game.
- Player 1 and 2 observes the same process X (continuous, strong Markov), and each chooses a time to stop: γ_1, γ_2 .
- Key feature 1: Uncertain competition.** Each player is uncertain about the existence of a competitor.

θ_i = "Player i has competition" $\in \{0, 1\}$, for $i \in \{1, 2\}$.

- We define

$$\hat{\gamma}_{3-i} := \begin{cases} \gamma_{3-i} & \text{on } \{\theta_i = 1\} \\ \infty & \text{on } \{\theta_i = 0\}. \end{cases}$$

Playing a game with a ghost

- **Key feature 2: Asymmetric payoffs.** Player i gets $g_i(X_{\tau_i})$ when they stop, if they were the first to stop
- **Key feature 3: Consolation.** Player i gets $h_i(X_{\tau_i})$ when they stop, if they were the second to stop.
- Preemption type: $g_i \geq h_i, i \in \{1,2\}$.
- The expected discounted payoffs are defined as

$$J_1(x; \gamma_1, \gamma_2) := \mathbb{E}_x[e^{-r\gamma_1} g_1(X_{\gamma_1}) \mathbb{1}_{\{\gamma_1 < \gamma_2\}} + e^{-r\gamma_2} V^{h_1}(X_{\gamma_2}) \mathbb{1}_{\{\gamma_1 \geq \gamma_2\}}],$$

and

$$J_2(x; \gamma_1, \gamma_2) := \mathbb{E}_x[e^{-r\gamma_2} g_2(X_{\gamma_2}) \mathbb{1}_{\{\gamma_2 \leq \gamma_1\}} + e^{-r\gamma_1} V^{h_2}(X_{\gamma_1}) \mathbb{1}_{\{\gamma_1 < \gamma_2\}}].$$

where V^f represents the “American value” with payoff f .

Playing a game with a ghost

- **Key feature 2: Asymmetric payoffs.** Player i gets $g_i(X_{\tau_i})$ when they stop, if they were the first to stop
- **Key feature 3: Consolation.** Player i gets $h_i(X_{\tau_i})$ when they stop, if they were the second to stop.
- Preemption type: $g_i \geq h_i, i \in \{1,2\}$.
- The expected discounted payoffs are defined as

$$J_1(x; \gamma_1, \gamma_2) := \mathbb{E}_x[e^{-r\gamma_1} g_1(X_{\gamma_1}) \mathbb{1}_{\{\gamma_1 < \gamma_2\}} + e^{-r\gamma_2} V^{h_1}(X_{\gamma_2}) \mathbb{1}_{\{\gamma_1 \geq \gamma_2\}}],$$

and

$$J_2(x; \gamma_1, \gamma_2) := \mathbb{E}_x[e^{-r\gamma_2} g_2(X_{\gamma_2}) \mathbb{1}_{\{\gamma_2 \leq \gamma_1\}} + e^{-r\gamma_1} V^{h_2}(X_{\gamma_1}) \mathbb{1}_{\{\gamma_1 < \gamma_2\}}].$$

where V^f represents the “American value” with payoff f .

Playing a game with a ghost

- **Key feature 2: Asymmetric payoffs.** Player i gets $g_i(X_{\tau_i})$ when they stop, if they were the first to stop
- **Key feature 3: Consolation.** Player i gets $h_i(X_{\tau_i})$ when they stop, if they were the second to stop.
- Preemption type: $g_i \geq h_i, i \in \{1,2\}$.
- The expected discounted payoffs are defined as

$$J_1(x; \gamma_1, \gamma_2) := \mathbb{E}_x[e^{-r\gamma_1} g_1(X_{\gamma_1}) \mathbb{1}_{\{\gamma_1 < \gamma_2\}} + e^{-r\gamma_2} V^{h_1}(X_{\gamma_2}) \mathbb{1}_{\{\gamma_1 \geq \gamma_2\}}],$$

and

$$J_2(x; \gamma_1, \gamma_2) := \mathbb{E}_x[e^{-r\gamma_2} g_2(X_{\gamma_2}) \mathbb{1}_{\{\gamma_2 \leq \gamma_1\}} + e^{-r\gamma_1} V^{h_2}(X_{\gamma_1}) \mathbb{1}_{\{\gamma_1 < \gamma_2\}}].$$

where V^f represents the “American value” with payoff f .

Playing a game with a ghost

- **Key feature 2: Asymmetric payoffs.** Player i gets $g_i(X_{\tau_i})$ when they stop, if they were the first to stop
- **Key feature 3: Consolation.** Player i gets $h_i(X_{\tau_i})$ when they stop, if they were the second to stop.
- Preemption type: $g_i \geq h_i, i \in \{1,2\}$.
- The expected discounted payoffs are defined as

$$J_1(x; \gamma_1, \gamma_2) := \mathbb{E}_x[e^{-r\gamma_1} g_1(X_{\gamma_1}) \mathbb{1}_{\{\gamma_1 < \gamma_2\}} + e^{-r\gamma_2} V^{h_1}(X_{\gamma_2}) \mathbb{1}_{\{\gamma_1 \geq \gamma_2\}}],$$

and

$$J_2(x; \gamma_1, \gamma_2) := \mathbb{E}_x[e^{-r\gamma_2} g_2(X_{\gamma_2}) \mathbb{1}_{\{\gamma_2 \leq \gamma_1\}} + e^{-r\gamma_1} V^{h_2}(X_{\gamma_1}) \mathbb{1}_{\{\gamma_1 < \gamma_2\}}].$$

where V^f represents the “American value” with payoff f .

Playing a game with a ghost

- **Key feature 2: Asymmetric payoffs.** Player i gets $g_i(X_{\tau_i})$ when they stop, if they were the first to stop
- **Key feature 3: Consolation.** Player i gets $h_i(X_{\tau_i})$ when they stop, if they were the second to stop.
- Preemption type: $g_i \geq h_i, i \in \{1, 2\}$.
- The expected discounted payoffs are defined as

$$J_1(x; \gamma_1, \gamma_2) := \mathbb{E}_x[e^{-r\gamma_1} g_1(X_{\gamma_1}) \mathbb{1}_{\{\gamma_1 < \gamma_2\}} + e^{-r\gamma_2} V^{h_1}(X_{\gamma_2}) \mathbb{1}_{\{\gamma_1 \geq \gamma_2\}}],$$

and

$$J_2(x; \gamma_1, \gamma_2) := \mathbb{E}_x[e^{-r\gamma_2} g_2(X_{\gamma_2}) \mathbb{1}_{\{\gamma_2 \leq \gamma_1\}} + e^{-r\gamma_1} V^{h_2}(X_{\gamma_1}) \mathbb{1}_{\{\gamma_1 < \gamma_2\}}].$$

where V^f represents the “American value” with payoff f .

Playing a game with a ghost

- **Key feature 2: Asymmetric payoffs.** Player i gets $g_i(X_{\tau_i})$ when they stop, if they were the first to stop
- **Key feature 3: Consolation.** Player i gets $h_i(X_{\tau_i})$ when they stop, if they were the second to stop.
- Preemption type: $g_i \geq h_i, i \in \{1, 2\}$.
- The expected discounted payoffs are defined as

$$J_1(x; \gamma_1, \gamma_2) := \mathbb{E}_x[e^{-r\gamma_1} g_1(X_{\gamma_1}) \mathbb{1}_{\{\gamma_1 < \gamma_2\}} + e^{-r\gamma_2} V^{h_1}(X_{\gamma_2}) \mathbb{1}_{\{\gamma_1 \geq \gamma_2\}}],$$

and

$$J_2(x; \gamma_1, \gamma_2) := \mathbb{E}_x[e^{-r\gamma_2} g_2(X_{\gamma_2}) \mathbb{1}_{\{\gamma_2 < \gamma_1\}} + e^{-r\gamma_1} V^{h_2}(X_{\gamma_1}) \mathbb{1}_{\{\gamma_1 \geq \gamma_2\}}].$$

where V^f represents the “American value” with payoff f .

Playing a game with a ghost

- At the beginning of the game, each player estimates their probability of competition:

$$\mathbb{P}(\theta_i = 1) = p_i.$$

Then they adjust their belief processes $\Pi_t^i = \mathbb{P}(\theta_i = 1 | \mathcal{F}_t^X, \hat{\gamma}_{3-i} > t)$ by observing:

- the underlying X ,
- the lack of action of their competitor.

- Note that we can "fool" our competitor, a pure-strategy equilibrium wouldn't exist!
- This means γ 's should be randomised stopping times:

$$\gamma_1 = \inf\{t \geq 0 : \Gamma_t^1 \geq U_1\}$$

$$\gamma_2 = \inf\{t \geq 0 : \Gamma_t^2 \geq U_2\}$$

where $U_1, U_2 \sim \text{Unif}(0, 1)$, independent.

- Γ^1, Γ^2 are $[0, 1]$ -valued \mathcal{F} -adapted controls, right continuous, non-decreasing, and $\Gamma_{0-}^i = 0$.

Playing a game with a ghost

- At the beginning of the game, each player estimates their probability of competition:

$$\mathbb{P}(\theta_i = 1) = p_i.$$

Then they adjust their belief processes $\Pi_t^i = \mathbb{P}(\theta_i = 1 | \mathcal{F}_t^X, \hat{\gamma}_{3-i} > t)$ by observing:

- the underlying X ,
- the lack of action of their competitor.
- Note that we can "fool" our competitor, a pure-strategy equilibrium wouldn't exist!
- This means γ 's should be randomised stopping times:

$$\gamma_1 = \inf\{t \geq 0 : \Gamma_t^1 \geq U_1\}$$

$$\gamma_2 = \inf\{t \geq 0 : \Gamma_t^2 \geq U_2\}$$

where $U_1, U_2 \sim \text{Unif}(0, 1)$, independent.

- Γ^1, Γ^2 are $[0, 1]$ -valued \mathcal{F} -adapted controls, right continuous, non-decreasing, and $\Gamma_{0-}^i = 0$.

Playing a game with a ghost

- At the beginning of the game, each player estimates their probability of competition:

$$\mathbb{P}(\theta_i = 1) = p_i.$$

Then they adjust their belief processes $\Pi_t^i = \mathbb{P}(\theta_i = 1 | \mathcal{F}_t^X, \hat{\gamma}_{3-i} > t)$ by observing:

- the underlying X ,
- the **lack of action** of their competitor.
- Note that we can "fool" our competitor, a pure-strategy equilibrium wouldn't exist!
- This means γ 's should be randomised stopping times:

$$\gamma_1 = \inf\{t \geq 0 : \Gamma_t^1 \geq U_1\}$$

$$\gamma_2 = \inf\{t \geq 0 : \Gamma_t^2 \geq U_2\}$$

where $U_1, U_2 \sim \text{Unif}(0, 1)$, independent.

- Γ^1, Γ^2 are $[0, 1]$ -valued \mathcal{F} -adapted controls, right continuous, non-decreasing, and $\Gamma_{0-}^i = 0$.

Playing a game with a ghost

- At the beginning of the game, each player estimates their probability of competition:

$$\mathbb{P}(\theta_i = 1) = p_i.$$

Then they adjust their belief processes $\Pi_t^i = \mathbb{P}(\theta_i = 1 | \mathcal{F}_t^X, \hat{\gamma}_{3-i} > t)$ by observing:

- the underlying X ,
- the **lack of action** of their competitor.
- Note that we can "fool" our competitor, a pure-strategy equilibrium wouldn't exist!
- This means γ 's should be randomised stopping times:

$$\gamma_1 = \inf\{t \geq 0 : \Gamma_t^1 \geq U_1\}$$

$$\gamma_2 = \inf\{t \geq 0 : \Gamma_t^2 \geq U_2\}$$

where $U_1, U_2 \sim \text{Unif}(0, 1)$, independent.

- Γ^1, Γ^2 are $[0, 1]$ -valued \mathcal{F} -adapted controls, right continuous, non-decreasing, and $\Gamma_{0-}^i = 0$.

Playing a game with a ghost

- At the beginning of the game, each player estimates their probability of competition:

$$\mathbb{P}(\theta_i = 1) = p_i.$$

Then they adjust their belief processes $\Pi_t^i = \mathbb{P}(\theta_i = 1 | \mathcal{F}_t^X, \hat{\gamma}_{3-i} > t)$ by observing:

- the underlying X ,
- the **lack of action** of their competitor.
- Note that we can "fool" our competitor, a pure-strategy equilibrium wouldn't exist!
- This means γ 's should be randomised stopping times:

$$\gamma_1 = \inf\{t \geq 0 : \Gamma_t^1 \geq U_1\}$$

$$\gamma_2 = \inf\{t \geq 0 : \Gamma_t^2 \geq U_2\}$$

where $U_1, U_2 \sim \text{Unif}(0, 1)$, independent.

- Γ^1, Γ^2 are $[0, 1]$ -valued \mathcal{F} -adapted controls, right continuous, non-decreasing, and $\Gamma_{0-}^i = 0$.

Playing a game with a ghost

- At the beginning of the game, each player estimates their probability of competition:

$$\mathbb{P}(\theta_i = 1) = p_i.$$

Then they adjust their belief processes $\Pi_t^i = \mathbb{P}(\theta_i = 1 | \mathcal{F}_t^X, \hat{\gamma}_{3-i} > t)$ by observing:

- the underlying X ,
- the **lack of action** of their competitor.

- Note that we can "fool" our competitor, a pure-strategy equilibrium wouldn't exist!
- This means γ 's should be randomised stopping times:

$$\gamma_1 = \inf\{t \geq 0 : \Gamma_t^1 \geq U_1\}$$

$$\gamma_2 = \inf\{t \geq 0 : \Gamma_t^2 \geq U_2\}$$

where $U_1, U_2 \sim \text{Unif}(0, 1)$, independent.

- Γ^1, Γ^2 are $[0, 1]$ -valued \mathcal{F} -adapted controls, right continuous, non-decreasing, and $\Gamma_{0-}^i = 0$.

Playing a game with a ghost

- At the beginning of the game, each player estimates their probability of competition:

$$\mathbb{P}(\theta_i = 1) = p_i.$$

Then they adjust their belief processes $\Pi_t^i = \mathbb{P}(\theta_i = 1 | \mathcal{F}_t^X, \hat{\gamma}_{3-i} > t)$ by observing:

- the underlying X ,
- the **lack of action** of their competitor.
- Note that we can "fool" our competitor, a pure-strategy equilibrium wouldn't exist!
- This means γ 's should be randomised stopping times:

$$\gamma_1 = \inf\{t \geq 0 : \Gamma_t^1 \geq U_1\}$$

$$\gamma_2 = \inf\{t \geq 0 : \Gamma_t^2 \geq U_2\}$$

where $U_1, U_2 \sim \text{Unif}(0, 1)$, independent.

- Γ^1, Γ^2 are $[0, 1]$ -valued \mathcal{F} -adapted controls, right continuous, non-decreasing, and $\Gamma_{0-}^i = 0$.

Ghost games with preemption

- Furthermore, Π_t^i is a function of Γ_t^{3-i} :

$$\Pi_t^i = \begin{cases} \frac{p_i(1-\Gamma_t^{3-i})}{1-p_i\Gamma_t^{3-i}} & \text{if } p_i < 1 \\ 1 & \text{if } p_i = 1 \end{cases}$$

- We seek for conditions such that a Nash equilibrium (Γ_1^*, Γ_2^*) exists:

$$J_1(x; \Gamma_1, \Gamma_2^*) \leq J_1(x; \Gamma_1^*, \Gamma_2^*) \text{ and } J_2(x; \Gamma_1^*, \Gamma_2) \leq J_2(x; \Gamma_1^*, \Gamma_2^*).$$

- And we are interested in the associated values:

$$u_1(x, p_1, p_2) = J_1(x; \Gamma_1^*, \Gamma_2^*) \quad \& \quad u_2(x, p_1, p_2) = J_2(x; \Gamma_1^*, \Gamma_2^*).$$

Ghost games with preemption

- Furthermore, Π_t^i is a function of Γ_t^{3-i} :

$$\Pi_t^i = \begin{cases} \frac{p_i(1-\Gamma_t^{3-i})}{1-p_i\Gamma_t^{3-i}} & \text{if } p_i < 1 \\ 1 & \text{if } p_i = 1 \end{cases}$$

- We seek for conditions such that a Nash equilibrium (Γ_1^*, Γ_2^*) exists:

$$J_1(x; \Gamma_1, \Gamma_2^*) \leq J_1(x; \Gamma_1^*, \Gamma_2^*) \text{ and } J_2(x; \Gamma_1^*, \Gamma_2) \leq J_2(x; \Gamma_1^*, \Gamma_2^*).$$

- And we are interested in the associated values:

$$u_1(x, p_1, p_2) = J_1(x; \Gamma_1^*, \Gamma_2^*) \quad \& \quad u_2(x, p_1, p_2) = J_2(x; \Gamma_1^*, \Gamma_2^*).$$

Ghost games with preemption

- Furthermore, Π_t^i is a function of Γ_t^{3-i} :

$$\Pi_t^i = \begin{cases} \frac{p_i(1-\Gamma_t^{3-i})}{1-p_i\Gamma_t^{3-i}} & \text{if } p_i < 1 \\ 1 & \text{if } p_i = 1 \end{cases}$$

- We seek for conditions such that a Nash equilibrium (Γ_1^*, Γ_2^*) exists:

$$J_1(x; \Gamma_1, \Gamma_2^*) \leq J_1(x; \Gamma_1^*, \Gamma_2^*) \text{ and } J_2(x; \Gamma_1^*, \Gamma_2) \leq J_2(x; \Gamma_1^*, \Gamma_2^*).$$

- And we are interested in the associated values:

$$u_1(x, p_1, p_2) = J_1(x; \Gamma_1^*, \Gamma_2^*) \quad \& \quad u_2(x, p_1, p_2) = J_2(x; \Gamma_1^*, \Gamma_2^*).$$

Our main result

A verification theorem

Let two continuous functions $u_1, u_2 : \mathbb{I}_{\{\times\}}[0, 1]^2 \rightarrow [0, \infty)$ and a pair (Γ^1, Γ^2) be given. Assume that $u_i \leq V^{g_i}$, and that $\Gamma_{\tau_{g_i}}^i = 1$, $i = 1, 2$. Define on $[0, \infty)$ two processes

$$M_t^1 := e^{-rt} (1 - p_1 \Gamma_t^2) u_1(X_t, \Pi_t^1, \Pi_t^2) + p_1 \int_{[0, t]} e^{-rs} V^{h_1}(X_s) d\Gamma_s^2$$

and

$$M_t^2 := e^{-rt} (1 - p_2 \Gamma_{t-}^1) u_2(X_t, \Pi_{t-}^1, \Pi_{t-}^2) + p_2 \int_{[0, t]} e^{-rs} V^{h_2}(X_s) d\Gamma_s^1,$$

and assume that

- (i) M^i is a supermartingale, and it is a martingale on $[0, \gamma_i(u)]$ for any $u < 1$, $i = 1, 2$;
- (ii) M^2 is continuous and only has downward jumps;
- (iii) $u_1(X_t, \Pi_t^1, \Pi_t^2) \geq g_1(X_t)$ and $u_2(X_t, \Pi_{t-}^1, \Pi_{t-}^2) \geq g_2(X_t)$ for all $t \geq 0$ \mathbb{P}_x -a.s.;
- (iv) $\Gamma_t^1 = \int_{[0, t]} 1_{\{u_1(X_s, \Pi_s^1, \Pi_s^2) = g_1(X_s)\}} d\Gamma_s^1$ and $\Gamma_t^2 = \int_{[0, t]} 1_{\{u_2(X_s, \Pi_{s-}^1, \Pi_{s-}^2) = g_2(X_s)\}} d\Gamma_s^2$.

Then (Γ^1, Γ^2) is a Nash equilibrium.

Outline

1 Motivation

2 Problem formulation and our main result

3 Examples

Examples

1 Symmetric cases:

- $g_1 = g_2 = g, h_1 = h_2 = h.$
- Assume $p_1 \leq p_2.$

2 Asymmetric cases.

Examples

1 Symmetric cases:

- $g_1 = g_2 = g, h_1 = h_2 = h.$
- Assume $p_1 \leq p_2.$

2 Asymmetric cases.

Examples

1 Symmetric cases:

- $g_1 = g_2 = g, h_1 = h_2 = h.$
- Assume $p_1 \leq p_2.$

2 Asymmetric cases.

Examples

1 Symmetric cases:

- $g_1 = g_2 = g, h_1 = h_2 = h.$
- Assume $p_1 \leq p_2.$

2 Asymmetric cases.

Case 1: symmetric cases with martingale consolation

Conclusion: the solutions can be constructed explicitly.

- Assumption: $e^{-rt \wedge \tau_g} V^h(X_{t \wedge \tau_g})$ is a martingale.
- e.g., $\{x : V^g(x) > g(x)\} \subseteq \{x : V^h(x) > h(x)\}$,
- Guess: by the indifference principle, the value of Player 1 should be

$$u_1(x, p_1) := (1 - p_1) V^g(x) + p_1 V^h(x).$$

- (Γ^1, Γ^2) can be constructed accordingly, and verified.

Remark

- *The equilibrium values only depend on p_1 .*
- *The (X, Π_1) process is reflected along the stopping boundary towards the continuation region.*

Case 1: symmetric cases with martingale consolation

Conclusion: the solutions can be constructed explicitly.

- Assumption: $e^{-rt \wedge \tau_g} V^h(X_{t \wedge \tau_g})$ is a martingale.
- e.g., $\{x : V^g(x) > g(x)\} \subseteq \{x : V^h(x) > h(x)\}$,
- Guess: by the indifference principle, the value of Player 1 should be

$$u_1(x, p_1) := (1 - p_1) V^g(x) + p_1 V^h(x).$$

- (Γ^1, Γ^2) can be constructed accordingly, and verified.

Remark

- *The equilibrium values only depend on p_1 .*
- *The (X, Π_1) process is reflected along the stopping boundary towards the continuation region.*

Case 1: symmetric cases with martingale consolation

Conclusion: the solutions can be constructed explicitly.

- Assumption: $e^{-rt \wedge \tau_g} V^h(X_{t \wedge \tau_g})$ is a martingale.
- e.g., $\{x : V^g(x) > g(x)\} \subseteq \{x : V^h(x) > h(x)\}$,
- Guess: by the indifference principle, the value of Player 1 should be

$$u_1(x, p_1) := (1 - p_1) V^g(x) + p_1 V^h(x).$$

- (Γ^1, Γ^2) can be constructed accordingly, and verified.

Remark

- *The equilibrium values only depend on p_1 .*
- *The (X, Π_1) process is reflected along the stopping boundary towards the continuation region.*

Case 1: symmetric cases with martingale consolation

Conclusion: the solutions can be constructed explicitly.

- Assumption: $e^{-rt \wedge \tau_g} V^h(X_{t \wedge \tau_g})$ is a martingale.
- e.g., $\{x : V^g(x) > g(x)\} \subseteq \{x : V^h(x) > h(x)\}$,
- Guess: by the indifference principle, the value of Player 1 should be

$$u_1(x, p_1) := (1 - p_1) V^g(x) + p_1 V^h(x).$$

- (Γ^1, Γ^2) can be constructed accordingly, and verified.

Remark

- *The equilibrium values only depend on p_1 .*
- *The (X, Π_1) process is reflected along the stopping boundary towards the continuation region.*

Case 1: symmetric cases with martingale consolation

Conclusion: the solutions can be constructed explicitly.

- Assumption: $e^{-rt \wedge \tau_g} V^h(X_{t \wedge \tau_g})$ is a martingale.
- e.g., $\{x : V^g(x) > g(x)\} \subseteq \{x : V^h(x) > h(x)\}$,
- Guess: by the indifference principle, the value of Player 1 should be

$$u_1(x, p_1) := (1 - p_1) V^g(x) + p_1 V^h(x).$$

- (Γ^1, Γ^2) can be constructed accordingly, and verified.

Remark

- *The equilibrium values only depend on p_1 .*
- *The (X, Π_1) process is reflected along the stopping boundary towards the continuation region.*

Case 1: symmetric cases with martingale consolation

Conclusion: the solutions can be constructed explicitly.

- Assumption: $e^{-rt \wedge \tau_g} V^h(X_{t \wedge \tau_g})$ is a martingale.
- e.g., $\{x : V^g(x) > g(x)\} \subseteq \{x : V^h(x) > h(x)\}$,
- Guess: by the indifference principle, the value of Player 1 should be

$$u_1(x, p_1) := (1 - p_1) V^g(x) + p_1 V^h(x).$$

- (Γ^1, Γ^2) can be constructed accordingly, and verified.

Remark

- *The equilibrium values only depend on p_1 .*
- *The (X, Π_1) process is reflected along the stopping boundary towards the continuation region.*

Case 1: symmetric cases with martingale consolation

Conclusion: the solutions can be constructed explicitly.

- Assumption: $e^{-rt \wedge \tau_g} V^h(X_{t \wedge \tau_g})$ is a martingale.
- e.g., $\{x : V^g(x) > g(x)\} \subseteq \{x : V^h(x) > h(x)\}$,
- Guess: by the indifference principle, the value of Player 1 should be

$$u_1(x, p_1) := (1 - p_1) V^g(x) + p_1 V^h(x).$$

- (Γ^1, Γ^2) can be constructed accordingly, and verified.

Remark

- *The equilibrium values only depend on p_1 .*
- *The (X, Π_1) process is reflected along the stopping boundary towards the continuation region.*

Case 1: symmetric cases with martingale consolation

Example 1: no consolation

special case: $h = 0$. Studied by **De Anglis and Ekström (2020)**. This is where we generalise from.

Case 1: symmetric cases with martingale consolation

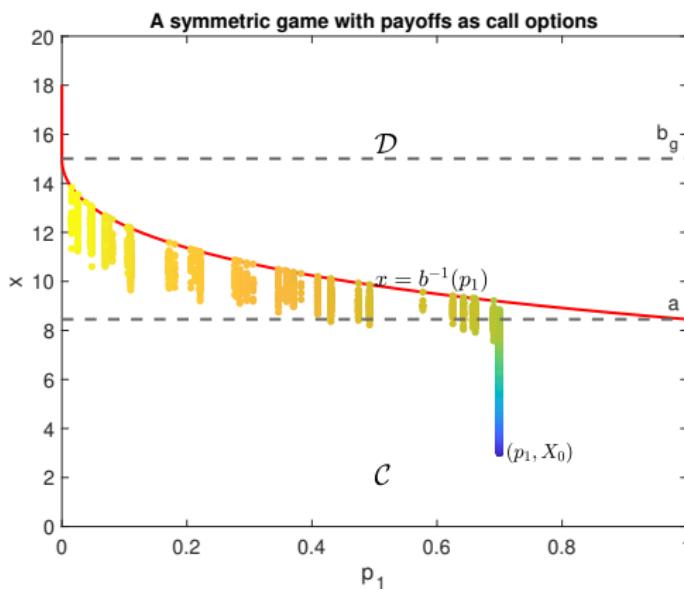
Example 1: no consolation

special case: $h = 0$. Studied by **De Anglis and Ekström (2020)**. This is where we generalise from.

Case 1: symmetric cases with martingale consolation

Example 2: Call option payoff and consolation

let X be a GBM, $dX_t = \mu X_t dt + \sigma X_t dW_t$. $g(x) = (x - K)^+$ and $h(x) = (x - L)^+$, for positive constants $K < L$.

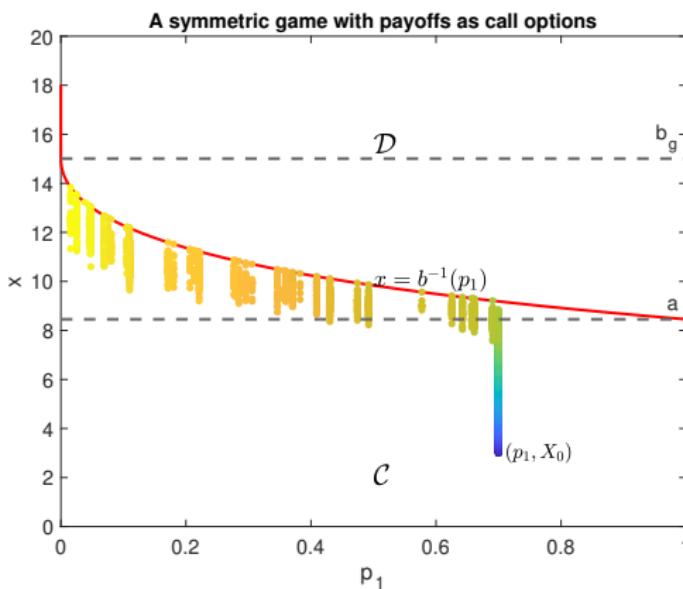


In this illustration,
 $g(x) = (x - 3)^+$,
 $h(x) = (x - 4)^+$.
 $\mu = 0.08$, $\sigma = 0.01$ and
 $r = 0.1$.

Case 1: symmetric cases with martingale consolation

Example 2: Call option payoff and consolation

let X be a GBM, $dX_t = \mu X_t dt + \sigma X_t dW_t$. $g(x) = (x - K)^+$ and $h(x) = (x - L)^+$, for positive constants $K < L$.



In this illustration,
 $g(x) = (x - 3)^+$,
 $h(x) = (x - 4)^+$.
 $\mu = 0.08$, $\sigma = 0.01$ and
 $r = 0.1$.

Case 2: symmetric cases with general consolation

Conclusion: Sometimes we can solve an ODE.

- Candidate value: $u_1(x, p_1, p_2) := (1 - p_1)V^g(x) + p_1 \mathbb{E}_x[e^{-r\gamma_2} V^h(X_{\gamma_2})]$.
- We can still argue that $u_1(x, p_1, p_2) = u_1(x, p_1)$.
- On the stopping boundary, it holds that

$$(1 - p_1) \frac{\partial u_1}{\partial p_1} + u_1 = V^h$$

for M^1 to be a martingale.

- (Γ^1, Γ^2) can be constructed accordingly, and verified.

Case 2: symmetric cases with general consolation

Conclusion: Sometimes we can solve an ODE.

- Candidate value: $u_1(x, p_1, p_2) := (1 - p_1)V^g(x) + p_1 \mathbb{E}_x[e^{-r\gamma_2} V^h(X_{\gamma_2})]$.
- We can still argue that $u_1(x, p_1, p_2) = u_1(x, p_1)$.
- On the stopping boundary, it holds that

$$(1 - p_1) \frac{\partial u_1}{\partial p_1} + u_1 = V^h$$

for M^1 to be a martingale.

- (Γ^1, Γ^2) can be constructed accordingly, and verified.

Case 2: symmetric cases with general consolation

Conclusion: Sometimes we can solve an ODE.

- Candidate value: $u_1(x, p_1, p_2) := (1 - p_1)V^g(x) + p_1\mathbb{E}_x[e^{-r\gamma_2}V^h(X_{\gamma_2})]$.
- We can still argue that $u_1(x, p_1, p_2) = u_1(x, p_1)$.
- On the stopping boundary, it holds that

$$(1 - p_1)\frac{\partial u_1}{\partial p_1} + u_1 = V^h$$

for M^1 to be a martingale.

- (Γ^1, Γ^2) can be constructed accordingly, and verified.

Case 2: symmetric cases with general consolation

Conclusion: Sometimes we can solve an ODE.

- Candidate value: $u_1(x, p_1, p_2) := (1 - p_1)V^g(x) + p_1\mathbb{E}_x[e^{-r\gamma_2}V^h(X_{\gamma_2})]$.
- We can still argue that $u_1(x, p_1, p_2) = u_1(x, p_1)$.
- On the stopping boundary, it holds that

$$(1 - p_1)\frac{\partial u_1}{\partial p_1} + u_1 = V^h$$

for M^1 to be a martingale.

- (Γ^1, Γ^2) can be constructed accordingly, and verified.

Case 2: symmetric cases with general consolation

Conclusion: Sometimes we can solve an ODE.

- Candidate value: $u_1(x, p_1, p_2) := (1 - p_1)V^g(x) + p_1 \mathbb{E}_x[e^{-r\gamma_2} V^h(X_{\gamma_2})]$.
- We can still argue that $u_1(x, p_1, p_2) = u_1(x, p_1)$.
- On the stopping boundary, it holds that

$$(1 - p_1) \frac{\partial u_1}{\partial p_1} + u_1 = V^h$$

for M^1 to be a martingale.

- (Γ^1, Γ^2) can be constructed accordingly, and verified.

Case 2: symmetric cases with general consolation

Example 3: call option payoff and general consolation

Let $g(x) = (x - K)^+$ and $h \leq g$.

- Let the stopping boundary be $p_1 = b(x)$ and make the ansatz

$$u_1(x, p_1) = c(p_1)\psi(x)$$

- We get the system

$$\begin{cases} c(b(x))\psi(x) = g(x) \\ (1 - b(x))c'(b(x))\psi(x) + c(b(x))\psi(x) = V^h(x). \end{cases}$$

- b can be solved explicitly and the NE can be characterized and verified.

Remark

Cases with two sided payoffs: similar.

Case 2: symmetric cases with general consolation

Example 3: call option payoff and general consolation

Let $g(x) = (x - K)^+$ and $h \leq g$.

- Let the stopping boundary be $p_1 = b(x)$ and make the ansatz

$$u_1(x, p_1) = c(p_1)\psi(x)$$

- We get the system

$$\begin{cases} c(b(x))\psi(x) = g(x) \\ (1 - b(x))c'(b(x))\psi(x) + c(b(x))\psi(x) = V^h(x). \end{cases}$$

- b can be solved explicitly and the NE can be characterized and verified.

Remark

Cases with two sided payoffs: similar.

Case 2: symmetric cases with general consolation

Example 3: call option payoff and general consolation

Let $g(x) = (x - K)^+$ and $h \leq g$.

- Let the stopping boundary be $p_1 = b(x)$ and make the ansatz

$$u_1(x, p_1) = c(p_1)\psi(x)$$

- We get the system

$$\begin{cases} c(b(x))\psi(x) = g(x) \\ (1 - b(x))c'(b(x))\psi(x) + c(b(x))\psi(x) = V^h(x). \end{cases}$$

- b can be solved explicitly and the NE can be characterized and verified.

Remark

Cases with two sided payoffs: similar.

Case 2: symmetric cases with general consolation

Example 3: call option payoff and general consolation

Let $g(x) = (x - K)^+$ and $h \leq g$.

- Let the stopping boundary be $p_1 = b(x)$ and make the ansatz

$$u_1(x, p_1) = c(p_1)\psi(x)$$

- We get the system

$$\begin{cases} c(b(x))\psi(x) = g(x) \\ (1 - b(x))c'(b(x))\psi(x) + c(b(x))\psi(x) = V^h(x). \end{cases}$$

- b can be solved explicitly and the NE can be characterized and verified.

Remark

Cases with two sided payoffs: similar.

Case 2: symmetric cases with general consolation

Example 3: call option payoff and general consolation

Let $g(x) = (x - K)^+$ and $h \leq g$.

- Let the stopping boundary be $p_1 = b(x)$ and make the ansatz

$$u_1(x, p_1) = c(p_1)\psi(x)$$

- We get the system

$$\begin{cases} c(b(x))\psi(x) = g(x) \\ (1 - b(x))c'(b(x))\psi(x) + c(b(x))\psi(x) = V^h(x). \end{cases}$$

- b can be solved explicitly and the NE can be characterized and verified.

Remark

Cases with two sided payoffs: similar.

Case 3: asymmetric cases

Conclusion: Sometimes we can guess and verify, in general it breaks down.

Example 4: stopping in the same direction

- Consider a case where the investors have individual investment costs, $g_i(x) = (x - K_i)^+$ and $h_i(x) = (x - L_i)^+$, with $K_i \leq L_i$.
- We assume $p_1 \leq p_2$, and $K_2 \leq K_1$.
- Similar intuition carries here: Player 1 should stop later.
- The ansatz for Player 1 is

$$u_1(x, p_1) := (1 - p_1) V^g(x) + p_1 V^h(x).$$

- The rest can be constructed and verified.

Note: the analysis breaks down if $K_2 > K_1$.

Case 3: asymmetric cases

Conclusion: Sometimes we can guess and verify, in general it breaks down.

Example 4: stopping in the same direction

- Consider a case where the investors have individual investment costs, $g_i(x) = (x - K_i)^+$ and $h_i(x) = (x - L_i)^+$, with $K_i \leq L_i$.
- We assume $p_1 \leq p_2$, and $K_2 \leq K_1$.
- Similar intuition carries here: Player 1 should stop later.
- The ansatz for Player 1 is

$$u_1(x, p_1) := (1 - p_1) V^g(x) + p_1 V^h(x).$$

- The rest can be constructed and verified.

Note: the analysis breaks down if $K_2 > K_1$.

Case 3: asymmetric cases

Conclusion: Sometimes we can guess and verify, in general it breaks down.

Example 4: stopping in the same direction

- Consider a case where the investors have individual investment costs, $g_i(x) = (x - K_i)^+$ and $h_i(x) = (x - L_i)^+$, with $K_i \leq L_i$.
- We assume $p_1 \leq p_2$, and $K_2 \leq K_1$.
- Similar intuition carries here: Player 1 should stop later.
- The ansatz for Player 1 is

$$u_1(x, p_1) := (1 - p_1) V^g(x) + p_1 V^h(x).$$

- The rest can be constructed and verified.

Note: the analysis breaks down if $K_2 > K_1$.

Case 3: asymmetric cases

Conclusion: Sometimes we can guess and verify, in general it breaks down.

Example 4: stopping in the same direction

- Consider a case where the investors have individual investment costs, $g_i(x) = (x - K_i)^+$ and $h_i(x) = (x - L_i)^+$, with $K_i \leq L_i$.
- We assume $p_1 \leq p_2$, and $K_2 \leq K_1$.
- Similar intuition carries here: Player 1 should stop later.
- The ansatz for Player 1 is

$$u_1(x, p_1) := (1 - p_1) V^g(x) + p_1 V^h(x).$$

- The rest can be constructed and verified.

Note: the analysis breaks down if $K_2 > K_1$.

Case 3: asymmetric cases

Conclusion: Sometimes we can guess and verify, in general it breaks down.

Example 4: stopping in the same direction

- Consider a case where the investors have individual investment costs, $g_i(x) = (x - K_i)^+$ and $h_i(x) = (x - L_i)^+$, with $K_i \leq L_i$.
- We assume $p_1 \leq p_2$, and $K_2 \leq K_1$.
- Similar intuition carries here: Player 1 should stop later.
- The ansatz for Player 1 is

$$u_1(x, p_1) := (1 - p_1) V^g(x) + p_1 V^h(x).$$

- The rest can be constructed and verified.

Note: the analysis breaks down if $K_2 > K_1$.

Case 3: asymmetric cases

Conclusion: Sometimes we can guess and verify, in general it breaks down.

Example 4: stopping in the same direction

- Consider a case where the investors have individual investment costs, $g_i(x) = (x - K_i)^+$ and $h_i(x) = (x - L_i)^+$, with $K_i \leq L_i$.
- We assume $p_1 \leq p_2$, and $K_2 \leq K_1$.
- Similar intuition carries here: Player 1 should stop later.
- The ansatz for Player 1 is

$$u_1(x, p_1) := (1 - p_1) V^g(x) + p_1 V^h(x).$$

- The rest can be constructed and verified.

Note: the analysis breaks down if $K_2 > K_1$.

Case 3: asymmetric cases

Conclusion: Sometimes we can guess and verify, in general it breaks down.

Example 4: stopping in the same direction

- Consider a case where the investors have individual investment costs, $g_i(x) = (x - K_i)^+$ and $h_i(x) = (x - L_i)^+$, with $K_i \leq L_i$.
- We assume $p_1 \leq p_2$, and $K_2 \leq K_1$.
- Similar intuition carries here: Player 1 should stop later.
- The ansatz for Player 1 is

$$u_1(x, p_1) := (1 - p_1) V^g(x) + p_1 V^h(x).$$

- The rest can be constructed and verified.

Note: the analysis breaks down if $K_2 > K_1$.

Case 3: asymmetric cases

Example 5: stopping in the opposite direction

- Consider a case where the investors have put/call payoffs:
 $g_1(x) = (K_1 - x)^+$ and $g_2(x) = (x - K_2)^+$, with $K_1 < K_2$.
- Assume there is no consolation: $h_1 = h_2 = 0$.
- We expect a lower stopping surface lower boundary surface $\{x = L(p_1, p_2)\}$ and an upper boundary surface $\{x = U(p_1, p_2)\}$.
- Player 1 exercises with some intensity only on L , and Player 2 only on U .
- The candidate values are given by

$$\begin{cases} u_1(x, p_1, p_2) = C_1(p_1, p_2)\psi(x) + D_1(p_1, p_2)\phi(x), \\ u_2(x, p_1, p_2) = C_2(p_1, p_2)\psi(x) + D_2(p_1, p_2)\phi(x), \end{cases}$$

- 6 unknowns and 6 boundary conditions.

Case 3: asymmetric cases

Example 5: stopping in the opposite direction

- Consider a case where the investors have put/call payoffs:
 $g_1(x) = (K_1 - x)^+$ and $g_2(x) = (x - K_2)^+$, with $K_1 < K_2$.
- Assume there is no consolation: $h_1 = h_2 = 0$.
- We expect a lower stopping surface lower boundary surface $\{x = L(p_1, p_2)\}$ and an upper boundary surface $\{x = U(p_1, p_2)\}$.
- Player 1 exercises with some intensity only on L , and Player 2 only on U .
- The candidate values are given by

$$\begin{cases} u_1(x, p_1, p_2) = C_1(p_1, p_2)\psi(x) + D_1(p_1, p_2)\phi(x), \\ u_2(x, p_1, p_2) = C_2(p_1, p_2)\psi(x) + D_2(p_1, p_2)\phi(x), \end{cases}$$

- 6 unknowns and 6 boundary conditions.

Case 3: asymmetric cases

Example 5: stopping in the opposite direction

- Consider a case where the investors have put/call payoffs:
 $g_1(x) = (K_1 - x)^+$ and $g_2(x) = (x - K_2)^+$, with $K_1 < K_2$.
- Assume there is no consolation: $h_1 = h_2 = 0$.
- We expect a lower stopping surface lower boundary surface $\{x = L(p_1, p_2)\}$ and an upper boundary surface $\{x = U(p_1, p_2)\}$.
- Player 1 exercises with some intensity only on L , and Player 2 only on U .
- The candidate values are given by

$$\begin{cases} u_1(x, p_1, p_2) = C_1(p_1, p_2)\psi(x) + D_1(p_1, p_2)\phi(x), \\ u_2(x, p_1, p_2) = C_2(p_1, p_2)\psi(x) + D_2(p_1, p_2)\phi(x), \end{cases}$$

- 6 unknowns and 6 boundary conditions.

Case 3: asymmetric cases

Example 5: stopping in the opposite direction

- Consider a case where the investors have put/call payoffs:
 $g_1(x) = (K_1 - x)^+$ and $g_2(x) = (x - K_2)^+$, with $K_1 < K_2$.
- Assume there is no consolation: $h_1 = h_2 = 0$.
- We expect a lower stopping surface lower boundary surface $\{x = L(p_1, p_2)\}$ and an upper boundary surface $\{x = U(p_1, p_2)\}$.
- Player 1 exercises with some intensity only on L , and Player 2 only on U .
- The candidate values are given by

$$\begin{cases} u_1(x, p_1, p_2) = C_1(p_1, p_2)\psi(x) + D_1(p_1, p_2)\phi(x), \\ u_2(x, p_1, p_2) = C_2(p_1, p_2)\psi(x) + D_2(p_1, p_2)\phi(x), \end{cases}$$

- 6 unknowns and 6 boundary conditions.

Case 3: asymmetric cases

Example 5: stopping in the opposite direction

- Consider a case where the investors have put/call payoffs:
 $g_1(x) = (K_1 - x)^+$ and $g_2(x) = (x - K_2)^+$, with $K_1 < K_2$.
- Assume there is no consolation: $h_1 = h_2 = 0$.
- We expect a lower stopping surface lower boundary surface $\{x = L(p_1, p_2)\}$ and an upper boundary surface $\{x = U(p_1, p_2)\}$.
- Player 1 exercises with some intensity only on L , and Player 2 only on U .
- The candidate values are given by

$$\begin{cases} u_1(x, p_1, p_2) = C_1(p_1, p_2)\psi(x) + D_1(p_1, p_2)\phi(x), \\ u_2(x, p_1, p_2) = C_2(p_1, p_2)\psi(x) + D_2(p_1, p_2)\phi(x), \end{cases}$$

- 6 unknowns and 6 boundary conditions.

Case 3: asymmetric cases

Example 5: stopping in the opposite direction

- Consider a case where the investors have put/call payoffs:
 $g_1(x) = (K_1 - x)^+$ and $g_2(x) = (x - K_2)^+$, with $K_1 < K_2$.
- Assume there is no consolation: $h_1 = h_2 = 0$.
- We expect a lower stopping surface lower boundary surface $\{x = L(p_1, p_2)\}$ and an upper boundary surface $\{x = U(p_1, p_2)\}$.
- Player 1 exercises with some intensity only on L , and Player 2 only on U .
- The candidate values are given by

$$\begin{cases} u_1(x, p_1, p_2) = C_1(p_1, p_2)\psi(x) + D_1(p_1, p_2)\phi(x), \\ u_2(x, p_1, p_2) = C_2(p_1, p_2)\psi(x) + D_2(p_1, p_2)\phi(x), \end{cases}$$

- 6 unknowns and 6 boundary conditions.

Summary

- We study a Dynkin game with uncertain competition.
- In the presence of asymmetry and consolation, in general, we don't have explicit solutions.
- In some cases, we can hope for explicit solutions for one of the players.

Summary

- We study a Dynkin game with uncertain competition.
- In the presence of asymmetry and consolation, in general, we don't have explicit solutions.
- In some cases, we can hope for explicit solutions for one of the players.

Summary

- We study a Dynkin game with uncertain competition.
- In the presence of asymmetry and consolation, in general, we don't have explicit solutions.
- In some cases, we can hope for explicit solutions for one of the players.

Summary

- We study a Dynkin game with uncertain competition.
- In the presence of asymmetry and consolation, in general, we don't have explicit solutions.
- In some cases, we can hope for explicit solutions for one of the players.

Future work

- The stopping boundary is in general a surface $f(x, p_1, p_2) = 0$.
- A variational inequality, solvability?
- Fixed-point approach?

Summary

- We study a Dynkin game with uncertain competition.
- In the presence of asymmetry and consolation, in general, we don't have explicit solutions.
- In some cases, we can hope for explicit solutions for one of the players.

Future work

- The stopping boundary is in general a surface $f(x, p_1, p_2) = 0$.
- A variational inequality, solvability?
- Fixed-point approach?

Summary

- We study a Dynkin game with uncertain competition.
- In the presence of asymmetry and consolation, in general, we don't have explicit solutions.
- In some cases, we can hope for explicit solutions for one of the players.

Future work

- The stopping boundary is in general a surface $f(x, p_1, p_2) = 0$.
- A variational inequality, solvability?
- Fixed-point approach?

Thank you!

Our paper: Ekström and Wang, “*Dynkin ghost games with asymmetry and consolation*”. arXiv:2411.04802