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Two motivating examples

@ Auction:
— You don’t know if the competitor exists, unless they act.
— Preemption type.

@ Possible investment opportunities:
— Second one to stop gets a slightly worse contract.
— Different costs for different companies.

This motivates us to study “ghost” games with with asymmetry and
consolation.
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Playing a game with a ghost

@ Consider a two-player non-zero-sum Dynkin game.

@ Player 1 and 2 observes the same process X (continuous, strong
Markov), and each chooses a time to stop: ¥4, 7.

@ Key feature 1: Uncertain competition. Each player is uncertain about
the existence of a competitor.

6; = "Player i has competition" € {0,1}, for i € {1,2}.
@ We define

PRI Oy on {6 =1}
s-i- w  on {6 =0}.
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Playing a game with a ghost

@ Key feature 2: Asymmetric payoffs. Player i gets g;(X,) when they
stop, if they were the first to stop

@ Key feature 3: Consolation. Player i gets h;(X;) when they stop, if
they were the second to stop.

@ Preemption type: g; > h;,i € {1,2}.
@ The expected discounted payoffs are defined as

J(xim. ) = Ex[e” " g1 (X )iy -5y + € VI (X)L 120,
and
Jo(X:71.72) = Ex[e "2 gn(Xp )Ly gyy +€ " V(X)L 15, 0]

where V' represents the “American value” with payoff f.
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Playing a game with a ghost

@ At the beginning of the game, each player estimates their probability of

competition:

P(6;=1)=p;.
Then they adjust their belief processes MM} = P(6; = 1|7, 93_; > t) by
observing:

o the underlying X,
e the lack of action of their competitor.

@ Note that we can "fool" our competitor, a pure-strategy equilibrium
wouldn’t exist!

@ This means ¥'s should be randomised stopping times:
v =inf{t>0:T} > U;}
=inf{t>0:T2> U}
where Uy, Us ~ Unif(0,1), independent.

@ r'.12 are [0,1]-valued .7 —adapted controls, right continuous,
non-decreasing, and I',_ = 0.
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Ghost games with preemption

@ Furthermore, N} is a function of r¥~':

) (1=
0 — T-Fé” if pj <1
1 if pj =1

@ We seek for conditions such that a Nash equilibrium (I}, 3) exists:

Ji (X;F1,F§) < Ji (X;F’{,F;) and J2(X; r:,rz) < JQ(X;F?,FE).

@ And we are interested in the associated values:

u1(x,p1,p2) =J1(x;T1,T3) & ux(Xx,p1,p2) = Ja(X;T7,T3).
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Our main result

A verification theorem

Let two continuous functions uy, up : Iy, [0,1]2 — [0,0) and a pair (I'",2) be given. Assume that u; < V9, and
that rgg_ =1, i=1,2. Define on [0,) two processes
1

M= ey ) 06 TR £y @V (X6) TS

and
M = e~(1 —poT} )up(X,. M1 .2 )+ pp /M e Vi (Xe)arl,
and assume that
(i) M is a supermartingale, and it is a martingale on [0, %(u)] forany u<1,i=1,2;
(i") M2 is continuous and only has downward jumps;
(i) ug (XN}, M2) > g1 (X;) and up(Xp, M}, M2 ) > go(X;) for all t > 0 Px-a.s.;

drl and r? dré.

o _
) Te = oV, (xs 112 =04 (X)) =08 uyx6.1L 12 )=g50060)

Then (I'!,r2) is a Nash equilibrium.




Examples
00000000000

Outline

e Examples



Examples
0@000000000

Examples

@ Symmetric cases:



Examples
0@000000000

Examples

@ Symmetric cases:
© g1=0=9 h=h=h



Examples
0@000000000

Examples

@ Symmetric cases:

© g1=0g2=9g. hy=hy=h.
e Assume p; < po.



Examples
0@000000000

Examples

@ Symmetric cases:

© g1=0g2=9g. hy=hy=h.
e Assume p; < po.

@ Asymmetric cases.
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Conclusion: the solutions can be constructed explicitly.
@ Assumption: e~ ""\% V”(X,Mg) is a martingale.
@ eg., {x:VI(x)>g(x)}C {x: VI(x)>h(x)},
@ Guess: by the indifference principle, the value of Player 1 should be

Uy (X, p1) == (1= p1) VI(x) +py V(x).

@ (I'",r?) can be constructed accordingly, and verified.

The equilibrium values only depend on p; .

The (X,N4) process is reflected along the stopping boundary towards
the continuation region.
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Case 1: symmetric cases with martingale consolation

Example 1: no consolation

special case: h= 0. Studied by De Anglis and Ekstrém (2020). This is
where we generalise from.
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Example 2: Call option payoff and consolation

let X be a GBM, dX; = uX;dt + o X;dW;. g(x) = (x — K)* and
h(x) = (x—L)*, for positive constants K < L.
20 A symmetric gan‘le with payolfs as call op "
18+
61 D by
14 b,
b T ~._
%10 R iy x=b"'(p) 1
______ L o2
8 e ]
6F
ot
(p1, Xo)
2 C
0 . . . .
0 0.2 0.4 06 0.8 1
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Example 2: Call option payoff and consolation

let X be a GBM, dX; = uX;dt+ 6 X;dW;. g(x) = (x — K)* and
h(x) = (x—L)*, for positive constants K < L.
20 A symmetric gan‘le with payolfs as call op "
18F
16 D bg
14 ;. __________________________ 4
). | In this illustration,
=10 ipy - z=b"'(p) ] 9(x) = (X_3)+,
________________ 2 h(X):(X—4)+.
8r 1 u=0.08, 6 =0.01 and
61 1 r=0.1.
A
(p1, Xo)
2 C
0 . . . .
0 0.2 0.4 0.6 0.8 1
Py
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Conclusion: Sometimes we can solve an ODE.
@ Candidate value: uy(x,pq,p2) := (1 —p1)VI(x) + p1Ex[e V”(X,,z)].
@ We can still argue that uq (x,py,p2) = Uy (X, p1).
@ On the stopping boundary, it holds that

8U1 _\h
(1 —P1)a+u1 =V

for M' to be a martingale.
@ (', 12) can be constructed accordingly, and verified.
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Example 3: call option payoff and general consolation
Let g(x) = (x—K)" and h< g.
@ Let the stopping boundary be p; = b(x) and make the ansatz

ut(x,p1) = c(p1)w(x)

@ We get the system

{ c(b(x))w(x) = g(x)
(1= b(x))¢/(b(x) w(x) + c(b(x))w(x) = V(x).

@ b can be solved explicitly and the NE can be characterized and verified.

v

Cases with two sided payoffs: similar.
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Conclusion: Sometimes we can guess and verify, in general it breaks down.

Example 4: stopping in the same direction

@ Consider a case where the investors have individual investment costs,
gi(x) = (x— K;)* and hi(x) = (x— L;)*, with K; < L.

@ We assume py < po, and K> < Kj.

@ Similar intuition carries here: Player 1 should stop later.
@ The ansatz for Player 1 is

Uy (x,p1) = (1= p1) VI(x) +py V(x).

@ The rest can be constructed and verified.

Note: the analysis breaks down if K> > K1.
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@ Consider a case where the investors have put/call payoffs:
g1(x) = (K1 —x)" and ga(x) = (x — K2)™, with Ky < K.

@ Assume there is no consolation: hy = h, = 0.
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@ Player 1 exercises with some intensity only on L, and Player 2 only on
U.

@ The candidate values are given by

Uy (x,p1,p2) = C1(p1,p2)¥(x) + D1 (p1,p2)9(x),
Up(X,p1,P2) = Ca(p1,p2)W(x) + Da(py,p2)d(x),




Examples
00000000800

Case 3: asymmetric cases

Example 5: stopping in the opposite direction

@ Consider a case where the investors have put/call payoffs:
g1(x) = (K1 —x)" and ga(x) = (x — K2)™, with Ky < K.

@ Assume there is no consolation: hy = h, = 0.

@ We expect a lower stopping surface lower boundary surface
{x=L(p1,p2)} and an upper boundary surface {x = U(p1,p2)}.

@ Player 1 exercises with some intensity only on L, and Player 2 only on
U.

@ The candidate values are given by

Uy (x,p1,p2) = C1(p1,p2)¥(x) + D1 (p1,p2)9(x),
Up(X,p1,P2) = Ca(p1,p2)W(x) + Da(py,p2)d(x),

@ 6 unknowns and 6 boundary conditions.
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Summary

@ We study a Dynkin game with uncertain competition.

@ In the presence of asymmetry and consolation, in general, we don’t
have explicit solutions.

@ In some cases, we can hope for explicit solutions for one of the players.

@ The stopping boundary is in general a surface f(x,p,p2) =0.
@ A variational inequality,solvability?

@ Fixed-point approach?
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Thank you!

Our paper: Ekstrom and Wang, “Dynkin ghost games with
asymmetry and consolation . arXiv:2411.04802
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