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Two motivating examples

Auction:
– You don’t know if the competitor exists, unless they act.
– Preemption type.

Possible investment opportunities:
– Second one to stop gets a slightly worse contract.
– Different costs for different companies.

This motivates us to study “ghost” games with with asymmetry and
consolation.
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Playing a game with a ghost

Consider a two-player non-zero-sum Dynkin game.

Player 1 and 2 observes the same process X (continuous, strong
Markov), and each chooses a time to stop: γ1,γ2.

Key feature 1: Uncertain competition. Each player is uncertain about
the existence of a competitor.

θi = "Player i has competition" ∈ {0,1}, for i ∈ {1,2}.

We define

γ̂3−i :=

{
γ3−i on {θi = 1}
∞ on {θi = 0}.
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Playing a game with a ghost

Key feature 2: Asymmetric payoffs. Player i gets gi (Xτi ) when they
stop, if they were the first to stop

Key feature 3: Consolation. Player i gets hi (Xτi ) when they stop, if
they were the second to stop.

Preemption type: gi ≥ hi , i ∈ {1,2}.
The expected discounted payoffs are defined as

J1(x ;γ1,γ2) := Ex [e−rγ1 g1(Xγ1 )1{γ1<γ̂2}+ e−rγ2 V h1 (Xγ2 )1{γ1≥γ̂2}],

and

J2(x ;γ1,γ2) := Ex [e−rγ2 g2(Xγ2 )1{γ2≤γ̂1}+ e−rγ1 V h2 (Xγ1 )1{γ̂1<γ2}].

where V f represents the “American value” with payoff f .
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Playing a game with a ghost

At the beginning of the game, each player estimates their probability of
competition:

P(θi = 1) = pi .

Then they adjust their belief processes Πi
t = P(θi = 1|FX

t , γ̂3−i > t) by
observing:

the underlying X ,
the lack of action of their competitor.

Note that we can "fool" our competitor, a pure-strategy equilibrium
wouldn’t exist!

This means γ ′s should be randomised stopping times:

γ1 = inf{t ≥ 0 : Γ1
t ≥ U1}

γ2 = inf{t ≥ 0 : Γ2
t ≥ U2}

where U1,U2 ∼ Unif (0,1), independent.

Γ1,Γ2 are [0,1]-valued F−adapted controls, right continuous,
non-decreasing, and Γi

0− = 0.
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Ghost games with preemption

Furthermore, Πi
t is a function of Γ3−i

t :

Πi
t =

{
pi (1−Γ3−i

t )

1−pi Γ
3−i
t

if pi < 1

1 if pi = 1

We seek for conditions such that a Nash equilibrium (Γ∗1,Γ
∗
2) exists:

J1(x ;Γ1,Γ
∗
2)≤ J1(x ;Γ∗1,Γ

∗
2) and J2(x ;Γ∗1,Γ2)≤ J2(x ;Γ∗1,Γ

∗
2).

And we are interested in the associated values:

u1(x ,p1,p2) = J1(x ;Γ∗1,Γ
∗
2) & u2(x ,p1,p2) = J2(x ;Γ∗1,Γ

∗
2).
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Our main result

A verification theorem
Let two continuous functions u1 ,u2 : I{×}[0,1]2 → [0,∞) and a pair (Γ1 ,Γ2) be given. Assume that ui ≤ V gi , and

that Γi
τgi

= 1, i = 1,2. Define on [0,∞) two processes

M1
t := e−rt (1−p1Γ2

t )u1(Xt ,Π
1
t ,Π

2
t ) + p1

∫
[0,t]

e−rsV h1 (Xs)dΓ2
s

and
M2

t := e−rt (1−p2Γ1
t−)u2(Xt ,Π

1
t−,Π

2
t−) + p2

∫
[0,t)

e−rsV h2 (Xs)dΓ1
s ,

and assume that

(i) M i is a supermartingale, and it is a martingale on [0,γi (u)] for any u < 1, i = 1,2;

(i’) M2 is continuous and only has downward jumps;

(ii) u1(Xt ,Π
1
t ,Π

2
t )≥ g1(Xt ) and u2(Xt ,Π

1
t−,Π

2
t−)≥ g2(Xt ) for all t ≥ 0 Px -a.s.;

(iii) Γ1
t =

∫
[0,t] 1{u1(Xs ,Π1

s ,Π
2
s )=g1(Xs )} dΓ1

s and Γ2
t =

∫
[0,t] 1{u2(Xs ,Π1

s− ,Π2
s−)=g2(Xs )} dΓ2

s .

Then (Γ1 ,Γ2) is a Nash equilibrium.
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Examples

1 Symmetric cases:

g1 = g2 = g, h1 = h2 = h.
Assume p1 ≤ p2.

2 Asymmetric cases.
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Case 1: symmetric cases with martingale consolation

Conclusion: the solutions can be constructed explicitly.

Assumption: e−rt∧τg V h(Xt∧τg ) is a martingale.

e.g., {x : V g(x) > g(x)} ⊆ {x : V h(x) > h(x)},
Guess: by the indifference principle, the value of Player 1 should be

u1(x ,p1) := (1−p1)V g(x) + p1V h(x).

(Γ1,Γ2) can be constructed accordingly, and verified.

Remark

The equilibrium values only depend on p1.

The (X ,Π1) process is reflected along the stopping boundary towards
the continuation region.
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Case 1: symmetric cases with martingale consolation

Example 1: no consolation

special case: h = 0. Studied by De Anglis and Ekström (2020). This is
where we generalise from.
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Case 1: symmetric cases with martingale consolation

Example 2: Call option payoff and consolation

let X be a GBM, dXt = µXt dt + σXt dWt . g(x) = (x−K )+ and
h(x) = (x −L)+, for positive constants K < L.

0 0.2 0.4 0.6 0.8 1

p
1

0

2

4

6

8

10

12

14

16

18

20

x

A symmetric game with payoffs as call options

b
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a

In this illustration,
g(x) = (x −3)+,
h(x) = (x −4)+.
µ = 0.08, σ = 0.01 and
r = 0.1.
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Example 2: Call option payoff and consolation

let X be a GBM, dXt = µXt dt + σXt dWt . g(x) = (x−K )+ and
h(x) = (x −L)+, for positive constants K < L.
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Case 2: symmetric cases with general consolation

Conclusion: Sometimes we can solve an ODE.

Candidate value: u1(x ,p1,p2) := (1−p1)V g(x) + p1Ex [e−rγ2 V h(Xγ2 )].

We can still argue that u1(x ,p1,p2) = u1(x ,p1).

On the stopping boundary, it holds that

(1−p1)
∂u1
∂p1

+ u1 = V h

for M1 to be a martingale.

(Γ1,Γ2) can be constructed accordingly, and verified.
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Case 2: symmetric cases with general consolation

Example 3: call option payoff and general consolation

Let g(x) = (x−K )+ and h ≤ g.

Let the stopping boundary be p1 = b(x) and make the ansatz

u1(x ,p1) = c(p1)ψ(x)

We get the system{
c(b(x))ψ(x) = g(x)

(1−b(x))c′(b(x))ψ(x) + c(b(x))ψ(x) = V h(x).

b can be solved explicitly and the NE can be characterized and verified.

Remark

Cases with two sided payoffs: similar.
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Case 3: asymmetric cases

Conclusion: Sometimes we can guess and verify, in general it breaks down.

Example 4: stopping in the same direction

Consider a case where the investors have individual investment costs,
gi (x) = (x −Ki )

+ and hi (x) = (x −Li )
+, with Ki ≤ Li .

We assume p1 ≤ p2, and K2 ≤ K1.

Similar intuition carries here: Player 1 should stop later.

The ansatz for Player 1 is

u1(x ,p1) := (1−p1)V g(x) + p1V h(x).

The rest can be constructed and verified.

Note: the analysis breaks down if K2 > K 1.
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Case 3: asymmetric cases

Example 5: stopping in the opposite direction

Consider a case where the investors have put/call payoffs:
g1(x) = (K1−x)+ and g2(x) = (x−K2)+, with K1 < K2.

Assume there is no consolation: h1 = h2 = 0.

We expect a lower stopping surface lower boundary surface
{x = L(p1,p2)} and an upper boundary surface {x = U(p1,p2)}.
Player 1 exercises with some intensity only on L, and Player 2 only on
U.

The candidate values are given by{
u1(x ,p1,p2) = C1(p1,p2)ψ(x) + D1(p1,p2)φ(x),

u2(x ,p1,p2) = C2(p1,p2)ψ(x) + D2(p1,p2)φ(x),

6 unknowns and 6 boundary conditions.
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Summary

We study a Dynkin game with uncertain competition.

In the presence of asymmetry and consolation, in general, we don’t
have explicit solutions.

In some cases, we can hope for explicit solutions for one of the players.

Future work

The stopping boundary is in general a surface f (x ,p1,p2) = 0.

A variational inequality,solvability?

Fixed-point approach?
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Thank you!
Our paper: Ekström and Wang, “Dynkin ghost games with

asymmetry and consolation ”. arXiv:2411.04802
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