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The classic 1D sequential testing

@ A stopper observes a 1D Brownian motion with drift
dX; =0t +dW;, Xo=0.

with P(=1)=1-60=0=m€]0,1].
@ Want to test hypotheses for its drift, e.g., Hp: § =0vs Hy : 6 = 1.

@ We are penalized for making a mistake, and have a constant observation cost
C per unit time.
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The classic 1D sequential testing

@ A stopper observes a 1D Brownian motion with drift
dX; =0t +dW;, Xo=0.
with P(=1)=1-60=0=m€]0,1].

@ Want to test hypotheses for its drift, e.g., Hp: § =0vs Hy : 6 = 1.

@ We are penalized for making a mistake, and have a constant observation cost
C per unit time.

o “Sequential testing problem”, can be formulated as an optimal stopping
problem in the posterior probability process, as

V(r) = ir;fE[I_IT A1 —=T;)+ cT]

where M, := P(0 = 1|FX).

@ Can be formulated as a free-boundary problem and solved explicitly [cf.
Shiryaev (1978)].
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A challenge when in higher dimensions: degeneracy

Multi-dimension setting? many possibilities. Let's for example, look at the
following problem:

@ Consider now the Brownian motion has 3 possible drifts instead of 2:
PO =1i)=m;,i€{0,1,2}.
@ The sufficient statistics in this case is (1%, M12).

@ There are two underlying coordinates but only one underlying Brownian
source. The operator is degenerate elliptic.

e N are functions of (¢, X;). Can formulate it in the (t, x)—coordinate:
uniformly parabolic [cf. Zhitlukhin and Shiryaev(2011)].
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A challenge when in higher dimensions: degeneracy

What about the following cases when they are degenerate in 77

@ When 6 can change its value at exponential times. e.g. classic quickest
detection:
dXt — ].tadt + th

The posterior process I, := P(6 > t|0 > 0) depends on the whole path. No
longer possible to formulate in (t, x).
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A challenge when in higher dimensions: degeneracy

What about the following cases when they are degenerate in 77

@ When 6 can change its value at exponential times. e.g. classic quickest
detection:
dXt — ].tadt + th

The posterior process I, := P(6 > t|0 > 0) depends on the whole path. No
longer possible to formulate in (t, x).

@ When the problem is X—dependent. e.g., a “hiring problem” application:
Xi =0t + W,
and the payoff upon stopping at 7 being
e " X,.

After filtering, the problem has (X, ) as its state.
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A challenge when in higher dimensions: degeneracy

What about the following cases when they are degenerate in 77

@ When 6 can change its value at exponential times. e.g. classic quickest
detection:
dXt — ].tadt + th

The posterior process I, := P(6 > t|0 > 0) depends on the whole path. No
longer possible to formulate in (t, x).

@ When the problem is X—dependent. e.g., a “hiring problem” application:
Xi =0t + W,
and the payoff upon stopping at 7 being
e " X,.

After filtering, the problem has (X, ) as its state.

These motivate us to study properties of these degenerate cases.
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Problem formulation

The ingredients of our problem:
@ A continuous time Markov chain (6;):>¢ taking values in {0,1,..., n} with
generator Q = (qi ;)i jen
o k—dimensional Brownian motion W = (W?,... W¥) independent of 6.
e k< n.
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Problem formulation

The ingredients of our problem:

@ A continuous time Markov chain (6;):>¢ taking values in {0,1,..., n} with
generator Q = (qi ;)i jen
o k—dimensional Brownian motion W = (W?,... W¥) independent of 6.
e k< n.
We consider .
dXe =Y lg—jNjdt +dW,, Xo =0. (1)
Jj=0

and problems of the form

V= SwpE... [e‘fo e X)s 011 X, ) +/ e Jo X% b xar| . (2)
TE 0

@ Here g, h, r are continuous, r >0, \; € R¥, i € {0,1,...,n}.
@ The posterior Pi lives on the n-dimensional simplex P,

N =P.(0; =i | Ff) foric{0,...n}
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Problem formulation

@ By standard filtering theory, I1; has dynamics:

drY, = qiMidt + (N — X) - dW,
Liv—/ Diffusion from W,
Drift from Q

o where X\, = 37 \illi, and W, is the innovation process.
@ The stopping problem is governed by the infinitesimal generator £, for this
I1; process
1 & _ _ o
L=< (A= A) (N = A
2Z7T7TJ( ) ( J )871','(9’/Tj

ij=0

Diffusion (degenerate)
T —
ij=0 " omj
Drift (from Q)

o It degenerates everywhere.
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Hypoellipticity and the Hormander's condition

@ Question: Even if the operator is not elliptic, can we still recover regularity
(e.g., smoothness) of the value function?

@ Our hope: Hypoellipticity (the property that u smooth if Lu smooth).

@ Intuition: The operator may be degenerate, but the randomness "spreads"
through the system.

@ The "missing directions" from the k-dimensional diffusion might be restored
via iterated Lie brackets.

Hoérmander (1967)
Write £ = Y.k_, D2 + Dy, where D;’s are C* vector fields. If

Lie(Do, Dl, coog DK)

spans the tangent space of the simplex at every point in int(P,1), the
Hoérmander's condition is satisfied, and the operator £, is hypoelliptic.
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@ [cf. Caffarelli and Friedman (1981)] studied the problem where n = k, with
n
g(m) =ao(1 —mo) A---Nan(1 —7,) h(r)= Z iy,
i=0

@ They commented on the case where k < n and gave the 1D, 3 drift example.
o Few literature in the filtering field: [cf. Peskir (2022), Ernst et al (2022)]

Our goal: characterize when the Hérmander's condition holds for L.
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A better coordinate: @,

@ We do a change of coordinate to the posterior likelihood process ¢;:

1

N
b, = I'Té for i=1,..,n (Note: ¢ =1)

@ This map is a C*-diffeomorphism from int(P,+1) — (0, 00)".
Hypoellipticity is preserved.
o Define a; e R¥ for i =1,...,n: a;:=X\; — Ao, and £, = a; - a;.
Denote by y(¢) = Y1, ¢i, the generator L for the ® process is:

L :1 En: z..¢.¢.872 + 1 zn: z..¢.¢.i
2 2710600, " y(9) 2= 1" 0

ij=1
n n 8

+> > (a5 - qi0¢j)¢i%
Jj=1 i=0 J
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Main Results: characterization in the testing case (Q=0)

We first write £ in the "sum of squares" form £ = Do + 1 Y- | D2.
o Key observation:
@ The diffusion fields commute:

[Dr,D)] =0 forall ryue{l,.. k}

@ The bracket of the drift and a diffusion field stays in the diffusion span:

k

[Do, D) =Y~ ci(#)Ds € span{Dy, ..., Dy}

s=1

Theorem 0

Let @ =0. Let A= (ay,...,a,) € RF*",

If n >k + 1, the Hdmander’'s condition FAILS.

If n = k + 1, the Hémander's condition HOLDS if and only if rank(A) = k and
the vector (||a1]|?, ---, ||an]|?) is not in the rowspace of A.
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Sufficient conditions for the detection case (Q # 0)

o Define "switch" field J := =7} 37 o(qij — 9i,09;) 60y,
@ The Key: The Lie bracket of J with the diffusion fields D, creates new
vector fields.

[J7 Df]7 [D57[J7 Dr]], etc.

Theorem 1 (Sufficient Condition 1)

The Hémander's condition holds if: (1) The drift-difference vectors ay, ..., a, are
pairwise distinct, and (2) For each coordinate i € {1, ..., n}, there exists some
state m # i such that qu,; > 0.

Remark: This is much weaker than Q being irreducible.
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Sufficient conditions for the detection case (Q # 0)

Theorem 2 (Sufficient Condition 2)

Assume gmj = 0 for all m # j and that there is at least one j such that gjo > 0 (at
least one state can jump back to 0). B
Define the n x (k + 2) augmented matrix A:

ail ... dkl ||al||2 1

D
Il

atn - akn lan]? 1

Then, dim Lie(Dg, ..., D) = min(rank(A), n). Hypoellipticity holds if
rank(A) = n, which can never hold if n > k + 2.
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Consequences of Hormander

Parabolic Hormander’s condition is immediate:
@ Define DQ := —0; + Dy, dim Lie{D§, Dy, D, ..., Dy} = n, then
dim Lle{D(‘)l7 Dl, DQ, ey Dk} =n+1
o It follows that the process (®;):>o is strong Feller.
@ This allows us to deal with t—dependent problems.

Yugiong Wang (University of Michigan) Hypoellipticity with incomplete information Oct 25, 2025



Consequences of Hormander

Parabolic Hormander’s condition is immediate:

@ Define DQ := —0; + Dy, dim Lie{D§, Dy, D, ..., Dy} = n, then
dim Lle{D(‘)l, Dy, Dy, ..., Dk} =n+1.

o It follows that the process (®¢);>0 is strong Feller.
@ This allows us to deal with t—dependent problems.
Hormander holds in the (¢, x) coordinate:

@ The operator Ly , for (¢, x)—dependent problems is hypoelliptic on
(0,00)" x R¥ if and only if the operator £ is hypoelliptic on (0, 00)".

@ This allows us to deal with x—dependent problems.
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Value function regularity in C

Let C be the continuation region (where V > g).

o If the Hémander condition holds, and the running payoff h € C°°(C), then
the value function V is also C*°(C).

o If r,he C%(C) for a € (0,1), then the value function V € C%<(C).
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Value function regularity in C

Let C be the continuation region (where V > g).

o If the Hémander condition holds, and the running payoff h € C°°(C), then
the value function V is also C*°(C).

o If r,he C%(C) for a € (0,1), then the value function V € C%<(C).

But no '"'smooth fit" implied:
o All these regularity results (C° or C>%) hold only in the C.

@ In particular, hypoellipticity alone does not imply the "smooth fit" condition.
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Example 1: Detecting the change time in multiple

coordinate

@ We observe an N-dim BM. At time n, K out of N coordinates gain a drift p.
o There are N Brownian coordinates and () possible drifts.

@ The generator @ has a specific structure: only the first row is non-zero.

—(MA A oA
0 0 ... 0

Q= .
0 0 0

@ The drift-difference vectors a; are all distinct. v/
Q Allgi >0 v .

@ The operator is hypoelliptic by Theorem 1.
[cf. Ernst et al (2022)]
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Example 2: Signal tracking with regime switching

o We observe X; = Y7 1p,—;\;t + W;. with

J
- 27:1 g9 a1 q2 ... adn
P1 —pP1 0 [SPEN 0
Q= . L : ()
Pk 0 0 v — Pk

with p;, q; > 0 for all i € {1, k},j € {1, n}.

@ Application-wise: monitoring signals from a radar with different levels of
disorder. We can consider,e.g.,

i
inf | / e~ c(dr, 0,) ]
d 0

with

C(d7 9) =1y Z Cl(e) + Laze Z C2(9).
i=1 i=1

@ The operator is hypoelliptic by Theorem 1 (same as Example 1).
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Example 3: Byzantine detection

A detection problem with possible corrupted sensor:

@ We observe two processes X!, X?:
Xi = poly<t + p1ly<e + W,
Xt2 - m01n<t + m]_].ngt + Wt27

with Po(n =0)=p, Po(n>1t)=(1—p)e "™, t>0.
@ The unknown state 6 has 4 possiblilities:

(pt1,m1), both channels are affected at t =0

(u1,mo), X1 is affected at time t =0, @)
(o, m1), X2 is affected at time t = 0,

(10, mo), no channels are affected at time t = 0,

We call it Byzantine because of the “Byzantine general problem”.
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Example 3: Byzantine detection

@ The drift matrix

A__|:N1_M0 0 Ml—uo}
0 m —mg mp — Mg

has full rank (2), but the vector (||a1|?, ||a2]|?, ||as]|?) is always in the
row-space of A.

@ The generator matrix @ as

0 0 0 O
A =X 0 0
Q=11 0o —x o0
A0 0 -\

Theorem 3 applies, the argumented matrix

. p1 = o 0 (11— po)? 1
A=— 0 mp; — mo (m1 — m0)2 1
pr—po my—mo  (p1— po)® 4 (my— mp)® 1

has rank 3, Hérmander condition holds. In working progress.
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Thank you!
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