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Motivation: knock-out tournament design

The goal of a tournament is to single out the best player.

Some sports play deterministic rules. e.g.,
Soccer: 90 minutes regulation + 30 minutes extra time if needed.
Historically some sequential rule (golden goal).
Basketball: Each game is always 48 minutes.
American football: Each game is always 60 minutes.

And some sports play sequential rules. e.g.,
Table tennis: Game ends when someone wins 11 points with margin. Win
four out of 7 sets (similar: tennis, badminton, volleyball).
Boxing: stop when essentially obvious evidence appears.
Quidditch: game ends immediately when the Snitch is caught.

Yuqiong Wang (University of Michigan) Optimal tournament match length Feb 6, 2026 2 / 23



Motivation: knock-out tournament design

In these games sometimes we think later stage games are more important:
Table tennis/badminton. Early rounds are often best of 3 sets, while
semifinals/finals are 5 or 7 sets.
Boxing. Title fights are scheduled for 12 rounds, while non titled 4-10 rounds

Does this make intuitive sense:? The final determines the champion, while
earlier rounds are numerous and each is less “informative” for the final winner.

Statistical viewpoint: longer matches reduce randomness and make the stronger
player more likely to advance.

Yuqiong Wang (University of Michigan) Optimal tournament match length Feb 6, 2026 3 / 23



Motivation: knock-out tournament design

In this talk we study how to optimally allocate match lengths in a 2n-player
knock-out tournament. We fix a target tournament accuracy

P(best player wins the tournament) ≥ 1 − η.

Two design questions:

1 Sequential vs. fixed length: How much can we reduce the average time
per game by using sequential stopping rules instead of fixed-length matches?

2 Round allocation: Should later stage games be longer? If yes, what is the
optimal round-dependent schedule?
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Relative efficiency of sequential vs non-sequential tests

To answer the first question, we focus on the classical testing problem for a
Brownian motion with unknown drift.

For each match we compare two testing methods:
Sequential testing: where the match ends when evidence is strong enough.
Fixed-length testing: a pre-determined sample size (fixed match length),
chosen to achieve the same error level.
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Relative efficiency of sequential vs non-sequential tests

The behavior of the players are often associated with some uncertainty.
When a match is played, we can observe its “behavior” as a continuous
process.
We model the match behavior of Player 1 and 2 as a Brownian motion with
drift:

Xt = θt + Wt ,

where the unknown drift is unobservable:

θ =
{

1
2 , if Player 1 is better than Player 2,

− 1
2 , if Player 2 is better than Player 1,

We thus test against the hypotheses H+ and H−, where

H+ : θ = 1
2 , H− : θ = −1

2 .
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Non-sequential tests (fixed sample size)

In a fixed-size sample test, one observes the process X over a time-interval
[0,T ], where T is a constant chosen before the sample is collected.
In a sequential test, choose a stopping time τ once sufficient evidence is
obtained.
Naturally, the average sample size in a sequential test (E[τ ]) is smaller than
the fixed sample size T .
We study the average relative reduction T−E[τ ]

T as a function of the power of
the test.
Denote 1 − η ∈ ( 1

2 , 1) the power of a test, so that η ∈ (0, 1
2 ) is the maximal

probability with which the wrong hypothesis is accepted.
We require that

P1(d = 1) ≥ 1 − η & P−1(d = −1) ≥ 1 − η.
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Non-sequential tests (fixed sample size)

By symmetry, an optimal decision at T is given by

d =
{ 1

2 if XT ≥ 0
− 1

2 if XT < 0.

Therefore, we choose T ≥ Tη, where Tη is defined by

P1(XTη
≤ 0) = P−1(XTη

≥ 0) = Φ
(

−
√

Tη/2
)

= η,

where Φ and φ are the CDF and pdf of N(0, 1).
Consequently,

Tη = 4
(
Φ−1(η)

)2
.
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Sequential tests

In sequential experiments, the process is observed until an information level is
achieved.
Define the posterior probability process

Πt := P(θ = 1
2 |Ft)

The process is observed until τ := inf{t ≥ 0 : Πt /∈ (b, 1 − b)} for some
b ∈ (0, 1

2 ).
Declare θ = 1

2 if Πτ = 1 − b and θ = − 1
2 otherwise.

We can show that
P(θ = d) = 1 − b.

Therefore, to have the same power of the test, we let b = 1 − η.
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Sequential tests

The expected value of observation time E[τ ] is characterized through finding the
unique solution of the boundary value problem{

1
2π

2(1 − π)2uππ + 1 = 0, π ∈ (η, 1 − η),
u(η) = u(1 − η) = 0,

with E[τ ] = u( 1
2 ) = −2ψ(η), where ψ(x) := (1 − 2x) ln x

1−x .

Remark 1
By Wald, there is one test that simultaneously minimizes E−1[τ ] and E1[τ ] over
all tests with power 1 − η. The stopping time in that test is given by

τη := inf
{

t ≥ 0 : Xt /∈
(

log η

1 − η
, log 1 − η

η

)}
.

The average sample size then satisfies

E−1 [τη] = E1 [τη] = −2ψ(η).
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Sequential tests

We introduce the function f : (0, 1
2 ) → [0, 1] given by

f (η) := E1[τη]
Tη

= −ψ(η)
2 (Φ−1(η))2 . (1)

f (η) < 1, and 1 − f (η) represents the average sample size reduction by using
sequential tests.
We provide precise bounds on f (η).
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Remark 1. Equivalency to Shiryaev’s testing problem

Recall the Bayesian formulation with constant cost per unit time:

V = inf
τ,d

{P (d = 0,Θ = 1) + P (d = 1,Θ = 0) + cE [τ ]} . (2)

Problem (2) can be written as

V (π) = inf
τ
Eπ[cτ + Πτ ∧ (1 − Πτ )]

The formulation with η is
equivalent to the classical
testing problem with c via a
Lagrange formulation.
In other words, the optimized
Lagrange multiplier
corresponds to 1

c .
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Remark 2. dependence on signal-to-noise ratio

If the observation process is given by Xt = θµt + Wt , then the signal-to-noise
ratio is µ.
By Brownian scaling, the process

X̃t := µXt/µ2 = µ

(
θ

t
µ2 + Wt/µ2

)
= θt + W̃t ,

where W̃t := µWt/µ2 is a standard Brownian motion.
Then Tµ,η needed to achieve a certain precision 1 − η when the
signal-to-noise ratio is µ satisfies

Tµ,η = 1
µ2 T1,η = 1

µ2 Tη.

Similarly, E[τµ,η] = 1
µ2 E [τ1,η] = 1

µ2 E [τη].
Both scale inversely with µ2, but the average reduction ratio 1 − f (η) is
independent of µ. It suffices to consider µ = 1

2 .
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The average reduction ratio is increasing in the error η.

Theorem 2
The function f is increasing on (0, 1

2 ), with f (0+) = 1
4 and f ( 1

2 −) = 2
π .

Remark. The minimal reduction is 36% and the maximal reduction is 75%.
f (0+) = 1

4 is well known [cf. Aivazjan(’59), Shiyaev(’78)], and numerically [cf.
Eisenberg(’91)] that convergence to 75% is rather slow, and that typical
reductions range between 50% and 60%.

The monotonicity is perhaps obvious but new.

Table: Relative efficiency of SPRT.

Power 1 − η f (η) Average reduction
0.80 0.5871 41.29%
0.90 0.5351 46.49%
0.95 0.4897 51.03%
0.99 0.4160 58.40%
0.999 0.3609 63.91%
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The average reduction ratio is increasing in the error η.

Proposition 3
We have f (η) = 1

4 − ln(− ln η)
8 ln η + o( ln(− ln η)

ln η ) as η → 0.

Remark. f approaches its limit at η = 1
2 quadratically.

η
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Figure: The function f (η) for η ∈ (0, 1
2 ) (left), and f (η) for η ∈ (0, 10−8) (right).

To reach a 70%, 72%, 74% efficiency reduction, we need error probabilities η to be
2 × 10−7, 2 × 10−12, 2 × 10−40, respectively.
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Problem formulation

There are many different forms of tournaments. Of the knockout types:
Football, table tennis,. . .

Children game, sorting:
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Problem formulation

Consider a game of 2n players (of football type). Want to minimize the
observation cost (time length), subject to some probability error.
Assumptions:

There is a distinct rank.
Each match is a Brownian motion

X ij
t = Θijt + W ij

t ,

where

Θij =
{

1
2 , if i is better than j ,

− 1
2 , if j is better than i ,

Initially, we have a uniform prior distribution on n! configurations. e.g., with
n = 2: 

1
2
3
4

 ,

1
2
4
3

 , . . . ,

4
3
2
1


 , (24 configurations)
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Matches of mixed lengths

Each match in stage k is played until a pre-determined time Tk is reached.
The winner is Player i if X ij

Tk
≥ 0, and Player j otherwise.

We assume every game is equally costly.
Fix η ∈ (0, 2−n), we consider

inf
{Tk }n

k=1

n∑
k=1

2n−kTk

subject to the constraint

P(the best player wins the tournament) ≥ 1 − η.

Since a better player wins a match of length T with probability Φ(
√

T
2 ), this

is equivalent to

inf
{Tk }n

k=1

n∑
k=1

2n−kTk subject to
n∏

k=1
Φ(

√
Tk
2 ) ≥ 1 − η. (3)
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Matches of fixed lengths

Define the Lagrangian

L({Tk}n
k=1, λ) :=

n∑
k=1

2n−kTk − λ

( n∑
k=1

a(Tk) − log(1 − η)
)

with a(T ) := log(Φ(
√

T
2 )).

a is increasing and strictly concave.
For the kth round, take the first order condition: ∂L

∂Tk
= 2n−k − a′(Tk) = 0.

Theorem 4
Let η ∈ (0, 2−n) be given. Then there is a unique solution
(T1, ...,Tn) = (T ∗

1 , ...,T ∗
n ) with T ∗

k > 0 for k = 1, ..., n to the system{ a′(T1)
2n−1 = a′(T2)

2n−2 = ... = a′(Tn)
2∑n

k=1 a(T ∗
k ) = log(1 − η),

and (T ∗
1 , ...,T ∗

n ) solves the optimization problem (3). Moreover,
T ∗

1 < T ∗
2 < · · · < T ∗

n .

Yuqiong Wang (University of Michigan) Optimal tournament match length Feb 6, 2026 19 / 23



Sequential matches

Each match in stage k is played until an information level is achieved.
Define the posterior probability process

Πij
t := P(θij = 1

2 |F ij
t )

Important assumption: symmetry.
The games in the same round uses the same strategy. i.e., the match is thus
played until τ ij

k := τ ij(bk) := inf{t ≥ 0 : Πij
t /∈ (bk , 1 − bk)},

Declare the winner to be Player i if Πij
τk

= 1 − bk and Player j if Πij
τk

= bk .
Denote the expected value of observation time τk

T (bk) := E[τk ] = −2ψ(bk).

Consequently, the constrained sequential tournament design problem becomes

inf
b∈(0, 1

2 )n

n∑
k=1

2n−kT (bk) subject to
n∏

k=1
(1 − bk) ≥ 1 − η. (4)
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Sequential matches

Similar to the fixed-time case, define

L(b, λ) :=
n∑

k=1
2n−kT (bk) − λ

( n∑
k=1

log(1 − bk) − log(1 − η)
)
.

The first order condition gives
∂L
∂bk

= 2n−kT ′(bk) + λ
1

1 − bk
= 0.

(1 − b)T ′(b) is strictly negative and increasing.

Theorem 5
Let η ∈ (0, 2−n) be given. Then there is a unique solution
(b1, ..., bn) = (b∗

1 , ..., b∗
n ) with b∗

k ∈ (0, 1/2) for k = 1, ..., n to the system{
2n−k(1 − bk)T ′(bk) = 2n−l(1 − bl)T ′(bl),∑n

k=1 log(1 − bk) = log(1 − η).

Moreover, (b∗
1 , ..., b∗

n ) solves the optimization problem (4), and
b∗

1 ≥ b∗
2 ≥ · · · ≥ b∗

n .
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Main takeaways

1 Should always play sequential.
2 If we have to play fixed-length, let’s observe more at later rounds.

T ∗
1 ≤ T ∗

2 ≤ · · · ≤ T ∗
n .

3 When we play sequential, should also observe more at later rounds.

b∗
1 ≥ b∗

2 ≥ · · · ≥ b∗
n , E[τ∗

1 ] ≤ E[τ∗
2 ] ≤ · · · ≤ E[τ∗

n ].

Remark. Cost of each game affects the monotonicity.
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Thank you!
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