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@ Motivation



Motivation: knock-out tournament design

The goal of a tournament is to single out the best player.

Some sports play deterministic rules. e.g.,

@ Soccer: 90 minutes regulation + 30 minutes extra time if needed.
Historically some sequential rule (golden goal).

o Basketball: Each game is always 48 minutes.
@ American football: Each game is always 60 minutes.

And some sports play sequential rules. e.g.,

o Table tennis: Game ends when someone wins 11 points with margin. Win
four out of 7 sets (similar: tennis, badminton, volleyball).

@ Boxing: stop when essentially obvious evidence appears.
@ Quidditch: game ends immediately when the Snitch is caught.
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Motivation: knock-out tournament design

In these games sometimes we think later stage games are more important:

o Table tennis/badminton. Early rounds are often best of 3 sets, while
semifinals/finals are 5 or 7 sets.

@ Boxing. Title fights are scheduled for 12 rounds, while non titled 4-10 rounds

Does this make intuitive sense:? The final determines the champion, while
earlier rounds are numerous and each is less “informative” for the final winner.

Statistical viewpoint: longer matches reduce randomness and make the stronger
player more likely to advance.
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Motivation: knock-out tournament design

In this talk we study how to optimally allocate match lengths in a 2"-player
knock-out tournament. We fix a target tournament accuracy

P(best player wins the tournament) > 1 — 1.
Two design questions:

@ Sequential vs. fixed length: How much can we reduce the average time
per game by using sequential stopping rules instead of fixed-length matches?

@ Round allocation: Should later stage games be longer? If yes, what is the
optimal round-dependent schedule?
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© Single match setting



Relative efficiency of sequential vs non-sequential tests

To answer the first question, we focus on the classical testing problem for a
Brownian motion with unknown drift.
For each match we compare two testing methods:

@ Sequential testing: where the match ends when evidence is strong enough.

o Fixed-length testing: a pre-determined sample size (fixed match length),
chosen to achieve the same error level.
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Relative efficiency of sequential vs non-sequential tests

@ The behavior of the players are often associated with some uncertainty.

@ When a match is played, we can observe its “behavior” as a continuous
process.

@ We model the match behavior of Player 1 and 2 as a Brownian motion with
drift:
Xt - Qt + Wt7

where the unknown drift is unobservable:
0— %, if Player 1 is better than Player 2,
—Z, if Player 2 is better than Player 1,

@ We thus test against the hypotheses H, and H_, where

1 1
He:0=—-, H_:0=—-.
L0 > 0 >
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Non-sequential tests (fixed sample size)

In a fixed-size sample test, one observes the process X over a time-interval
[0, T], where T is a constant chosen before the sample is collected.

In a sequential test, choose a stopping time 7 once sufficient evidence is
obtained.

Naturally, the average sample size in a sequential test (E[7]) is smaller than
the fixed sample size T.

We study the average relative reduction as a function of the power of

the test.

Denote 1 — 1 € (3,1) the power of a test, so that i € (0, 1) is the maximal
probability with which the wrong hypothesis is accepted.

T—E[7]
—=

We require that

Pi(d=1)>1-n & P_i(d=-1)>1-n.
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Non-sequential tests (fixed sample size)

@ By symmetry, an optimal decision at T is given by

@ Therefore, we choose T > T,,, where T, is defined by

Py(Xr, <0) =P_1(Xr, > 0) = & (—\/T,/2) =1,

where ® and ¢ are the CDF and pdf of N(0,1).
o Consequently,
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Sequential tests

@ In sequential experiments, the process is observed until an information level is

achieved.

@ Define the posterior probability process
1
ﬂt = IF’(@ = Elft)

@ The process is observed until 7 :=inf{t > 0:M; ¢ (b,1 — b)} for some

be(0,3).
@ Declare 0 = % if M. =1—band O = f% otherwise.
@ We can show that

P(0 =d)=1—b.

Therefore, to have the same power of the test, we let b=1—17.
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Sequential tests

The expected value of observation time E[7] is characterized through finding the
unique solution of the boundary value problem

ir2(1—m)urr +1=0, we(n,1-1n),
u(n) = u(l—n) =0,

with E[7] = u(3) = —2¢(n), where ¥/(x) := (1 — 2x)In ;.

By Wald, there is one test that simultaneously minimizes E_1[7] and E4[7] over
all tests with power 1 — 7). The stopping time in that test is given by

:inf{t20:xt¢ (,ogl Iog1—77>}.

n

The average sample size then satisfies

E_1 [r] = E1 [1] = —2¢().
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Sequential tests

e We introduce the function f : (0, 1) — [0, 1] given by

o I['31[7'77] N —w(n)
= = Sy

e f(n) <1, and 1 — f(n) represents the average sample size reduction by using
sequential tests.

(1)

e We provide precise bounds on (7).
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Remark 1. Equivalency to Shiryaev's testing problem

Recall the Bayesian formulation with constant cost per unit time:

V=inf{P(d=0,6=1)+P(d=10=0)+cE[l}. ()

Problem (2) can be written as

V(r) = infE.[er + M- A (1= 1,)]

@ The formulation with 7 is
Cost . equivalent to the classical
/ b= madm testing problem with ¢ via a
Lagrange formulation.

V(T
@ In other words, the optimized
! ! Lagrange multlplller
1‘ H corresponds to .
(
1) [ =% . 1 K
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Remark 2. dependence on signal-to-noise ratio

o If the observation process is given by X; = Out + W;, then the signal-to-noise
ratio is (.

@ By Brownian scaling, the process
- t ~
Xt = 'U,Xt/MZ :’[L(glﬂ+ Wt/N2> :0t+ Wt,

where W, := uW,,,2 is a standard Brownian motion.

@ Then T, , needed to achieve a certain precision 1 — 1 when the
signal-to-noise ratio is yu satisfies

Tun=—

e Similarly, E[7, ] = ﬁE[ﬁm] = iE[Tn].

@ Both scale inversely with 2, but the average reduction ratio 1 — (1) is
independent of u. It suffices to consider pu = %
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The average reduction ratio is increasing in the error 7).

The function f is increasing on (0, %), with f(0+) = 1 and f(3—) = 2.

Remark. The minimal reduction is 36% and the maximal reduction is 75%.
f(0+) = 1 is well known [cf. Aivazjan('59), Shiyaev('78)], and numerically [cf.
Eisenberg('91)] that convergence to 75% is rather slow, and that typical
reductions range between 50% and 60%.

The monotonicity is perhaps obvious but new.

Table: Relative efficiency of SPRT.

Power 1 —n | f(n)  Average reduction
0.80 0.5871 41.29%
0.90 0.5351 46.49%
0.95 0.4897 51.03%
0.99 0.4160 58.40%
0.999 0.3609 63.91%
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The average reduction ratio is increasing in the error n

Proposition 3

We have f(n) = L — In(Inn)

% 8lnn +O( e |n7])) 3577—>0-

Remark. f approaches its limit at n = % quadratically.

1) =€ JT, 150.05)

10) = EL )T, 1<(0.168)
T T T

Figure: The function f(n) for n € (0,%) (left), and f(n) for n € (0, 1078) (right)

To reach a 70%, 72%, 74% efficiency reduction, we need error probabilities 7 to be
2x1077,2 x 10712,2 x 10740, respectively.
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© Knockout tournament setting



Problem formulation

There are many different forms of tournaments. Of the knockout types:
@ Football, table tennis,. . .

£ W N a

The champion!

o0 H N

o Children game, sorting:

1 >
2
3 - The “king of the hill”
M &
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Problem formulation

Consider a game of 2" players (of football type). Want to minimize the

observation cost (time length), subject to some probability error.
Assumptions:

@ There is a distinct rank.

@ Each match is a Brownian motion
X/ =0t + W/,

where
o — £,if i is better than j,
—1,if j is better than i,

@ Initially, we have a uniform prior distribution on n! configurations. e.g., with
n=2:

, (24 configurations)

P WND R
w N =
=N W PN
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Matches of mixed lengths

@ Each match in stage k is played until a pre-determined time Ty is reached.
@ The winner is Player i if X% > 0, and Player j otherwise.

o We assume every game is equally costly.

e Fixn € (0,27"), we consider

inf 2" KT,
e 12
subject to the constraint

P(the best player wins the tournament) > 1 —n

@ Since a better player wins a match of length T with probability ¢(§) this
is equivalent to
; VT
inf 2""KT, subject to H d( k) >1-—n. 3)
a3 k=1
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Matches of fixed lengths

@ Define the Lagrangian

L{Ti}p1A) == izn—kn - A (

with a(T) := log(®(4L)).
@ a is increasing and strictly concave.

@ For the kth round, take the first order condition: g—ﬁ =21k 2 (T)=0

Let n € (0,27") be given. Then there is a unique solution
(Ta, .o, Tn) = (T4, ..., T) with T} >0 for k =1,...,n to the system

3

a(Tx) — log(1 — 77))

k=1

{ A(h) _ (1) .  _ a(Ta)
n— Ton—1 — 2n on—2 — 2
>on, a(T7) = log(1 — ),

and (T5, ..., T;) solves the optimization problem (3). Moreover,
Tr<Ty<---< T
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Sequential matches

@ Each match in stage k is played until an information level is achieved.
@ Define the posterior probability process

N 1 .
n} = B(s; = 5|7))

@ Important assumption: symmetry.

@ The games in the same round uses the same strategy. i.e., the match is thus
played until 7/ := 7U(by) :=inf{t > 0: M} ¢ (bx,1 — bi)},
@ Declare the winner to be Player i if I'ng =1 — by and Player j if I'ng = by.

@ Denote the expected value of observation time 7
T(bk) = E[Tk] = —2¢(bk)

o Consequently, the constrained sequential tournament design problem becomes

n

inf Z2"‘kT(bk) subject to H(l —b)>1-—n. 4

1
be0.2)" 5 k=1
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Sequential matches

@ Similar to the fixed-time case, define

Z 2"k T (by) — (Z log(1 — bx) — log(1 — n)) .

@ The first order condltlon gives
oL 1
by 1 — by

e (1 —b)T'(b) is strictly negative and increasing.

Let n € (0,27") be given. Then there is a unique solution
(b1, ..., bn) = (b5, ..., b}) with b; € (0,1/2) for k =1, ..., n to the system

— on— kT/( ) =0.

2"_k(1 — bk)T/(bk) = 2"_1(1 — b/)’T,(b/)7
> k1 log(1 — by) = log(1 — 7).

Moreover, (b, ..., b)) solves the optimization problem (4), and
by > by > > b
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Main takeaways

@ Should always play sequential.
@ If we have to play fixed-length, let’s observe more at later rounds.

Tr<T;y<---<T,.
© When we play sequential, should also observe more at later rounds.

bi > by >--->by, B[] <E[n] < <E[r;].

Remark. Cost of each game affects the monotonicity.
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Thank you!
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