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The classic 1D sequential testing

A stopper observes a 1D Brownian motion with drift

dXt = θt + dWt , X0 = 0.

with P(θ = 1) = 1 − θ = 0 = π ∈ [0, 1].
Want to test hypotheses for its drift, e.g., H0 : θ = 0 vs H1 : θ = 1.
We are penalized for making a mistake, and have a constant observation cost
c per unit time.

V = inf
(τ,d)

E[P(d ̸= θ) + cτ ].

“Sequential testing problem”, can be formulated as an optimal stopping
problem in the posterior probability process, as

V (π) = inf
τ
E[Πτ ∧ (1 − Πτ ) + cτ ]

where Πt := P(θ = 1|FX
t ).

This 1D problem can be formulated as a free-boundary problem and solved
explicitly [cf. Shiryaev (1978)].
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A challenge when in higher dimensions: degeneracy

Multi-dimension setting? many possibilities. . .

Let’s for example, look at the following problem:
Consider now the Brownian motion has 3 possible drifts instead of 2:
P(θ = i) = πi , i ∈ {0, 1, 2}.

The sufficient statistics in this case is (Π1, Π2).
There are two underlying coordinates but only one underlying Brownian
source. The operator is degenerate elliptic.
Can be resolved: Πi

t are functions of (t, Xt). Can formulate it in the
(t, x)−coordinate: uniformly parabolic [cf. Zhitlukhin and Shiryaev (2011)].
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A challenge when in higher dimensions: degeneracy

What about the following cases?

When θ can change its value at exponential times. e.g. classic quickest
detection:

dXt = 1t≥θdt + dWt .

with P(θ = 0) = π and P(θ > t|θ > 0) = e−λt .
i.e., θ changes from 0 to 1 then never changes back.
Want to declare the change point asap without a false alarm:

V = inf
τ

{P(τ < θ) + E[(τ − θ)+]}

Problem: the posterior process Πt := P(θ ≤ t|Ft) depends on the whole
path. No longer possible to formulate it in (t, x).
Can solve in 1D, can be degenerate in Π when extended to higher
dimensions. e.g., θ changes to two possible values.
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Beyond testing and detection: partial information

When the problem is X−dependent. More applications.
e.g., a “hiring problem” application:

Xt = θt + Wt ,

and the payoff upon stopping at τ being

e−rτ Xτ .

After filtering, the problem has (X , Π) as its state.

These motivate us to study properties of these degenerate cases.
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Problem formulation

The ingredients of our problem:
A continuous time Markov chain (θt)t≥0 taking values in n̄ := {0, 1, . . . , n}
with generator Q = (qij)i,j∈n̄,
k−dimensional Brownian motion W = (W 1, . . . , W k) independent of θ.
k < n.

We refer to
Q ≡ 0: the “testing case”,
Q ̸= 0: the “detection case”
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Problem formulation

We consider

dXt =
n∑

j=0
1θt =jλjdt + dWt , X0 = 0. (1)

and stopping problems of the form

V = sup
τ∈T

Eπ

[
e−
∫ τ

0
r(Πs )dsg(Πτ ) +

∫ τ

0
e−
∫ t

0
r(Πs )dsh(Πt)dt

]
. (2)

Here g , h, r are continuous, r ≥ 0, λi ∈ Rk , i ∈ {0, 1, . . . , n}.
The posterior Π lives on the n-dimensional simplex Pn+1 with

Πi
t = Pπ(θt = i | FX

t ) for i ∈ {0, . . . n}
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Problem formulation

By standard filtering theory, Πt has dynamics:

dΠj
t =

n∑
i=0

qijΠi
tdt︸ ︷︷ ︸

Drift from Q

+ Πj
t(λj − λt) · dW̃t︸ ︷︷ ︸
Diffusion from Wt

where λt =
∑n

i=0 λiΠi
t , and W̃t is the innovation process.

The stopping problem is governed by the infinitesimal generator Lπ for this
Πt process

Lπ = 1
2

n∑
i,j=0

πiπj(λi − λ) · (λj − λ) ∂2

∂πi∂πj︸ ︷︷ ︸
Diffusion (degenerate)

+
n∑

i,j=0
qijπi

∂

∂πj︸ ︷︷ ︸
Drift (from Q)

It degenerates everywhere.
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Geometric intuition of degeneracy (n = 2, k = 1)

Πt lives on the n−dim simplex.

Observations are driven by a
k–dimensional Brownian motion.

Local picture: at each interior point
π, randomness initially acts only in a
k–dimensional subspace of the
n–dimensional tangent space.

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

π

1D diffusion
direction
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Hypoellipticity and the Hörmander’s condition

Question: Even if the operator is not elliptic, can we still recover regularity
(e.g., smoothness) of the value function?
Our hope: Hypoellipticity (the property that u smooth if Lu smooth).
Intuition: The operator may be degenerate, but the randomness "spreads"
through the system.
The "missing directions" from the k-dimensional diffusion might be restored
via iterated Lie brackets.

Hörmander (1967)
Write Lπ =

∑k
r=1 D2

r + D0, where Di ’s are C∞ vector fields. If

Lie(D0, D1, . . . , DK )

spans the tangent space of the simplex at every point in int(Pn+1), the
Hörmander’s condition is satisfied, and the operator Lπ is hypoelliptic.
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Existing work

[cf. Caffarelli and Friedman (1981)] studied the problem where n = k, with

g(π) = a0(1 − π0) ∧ · · · ∧ an(1 − πn) h(π) =
n∑

i=0
ciπi .

They commented on the case where k < n and gave the 1D, 3 drift example.
Few literature in the filtering field: [cf. Peskir (2022), Ernst et al (2022)]

Our goal: characterize when the Hörmander’s condition holds for Lπ.
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A better coordinate: Φt

We do a change of coordinate to the posterior likelihood process Φt :

Φi
t = Πi

t
Π0

t
for i = 1, ..., n (Note: Φ0

t ≡ 1)

Why Φ?
This map is a C∞-diffeomorphism from int(Pn+1) → (0, ∞)n.
Hypoellipticity is preserved.
Define ai ∈ Rk for i = 1, . . . , n: ai := λi − λ0, and Σij = ai · aj ,

dΦi
t =

( n∑
m=0

Φm
t (qmi − qm0Φi

t) + 1
Y

n∑
m=1

Σi,mΦi
tΦm

t

)
dt + Φi

tai · dW̃t (3)

with Φi
0 = ϕi and Yt :=

∑n
i=0 Φt .
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Sum-of-squares decomposition

Denote by y(ϕ) =
∑n

i=0 ϕi , the generator L for the Φ process is:

L =1
2

n∑
i,j=1

Σijϕi ϕj
∂2

∂ϕi ∂ϕj
+ 1

y(ϕ)

n∑
i,j=1

Σijϕi ϕj
∂

∂ϕj

+
n∑

j=1

n∑
i=0

(qij − qi0ϕj)ϕi
∂

∂ϕj

We can write L = DJ
0 + 1

2

k∑
r=1

D2
r with

Diffusion fields.

Dr :=
n∑

i=1

air ϕi ∂ϕi , where ai = (ai1, . . . , aik).

Drift and switching fields.

DJ
0 := 1

y(ϕ)

n∑
i,j=1

Σijϕi ϕj ∂ϕj − 1
2

n∑
i=1

∥ai ∥2ϕi ∂ϕi +
n∑

j=1

n∑
i=0

(qij − qi0ϕj) ϕi ∂ϕj ,
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Main Results: characterization in the testing case (Q=0)

We first write L in the "sum of squares" form L = D0 + 1
2
∑k

r=1 D2
r .

Key observations:

1 The diffusion fields commute:

[Dr , Du] = 0 for all r , u ∈ {1, ..., k}

2 The bracket of the drift and a diffusion field stays in the diffusion span:

[D0, Du] =
k∑

s=1

cs(ϕ)Ds ∈ span{D1, ..., Dk}

Theorem 0
Let Q = 0. Let A = (a1, ..., an) ∈ Rk×n.
If n > k+1, the Hömander’s condition FAILS.
If n = k+1, the Hömander’s condition HOLDS if and only if rank(A) = k and
the vector (∥a1∥2, ..., ∥an∥2) is not in the rowspace of A.
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Sufficient conditions for the detection case (Q ̸= 0)

Add the "switch" field J :=
∑n

j=1
∑n

i=0(qi,j − qi,0ϕj)ϕi∂ϕj

The Key: The closure mechanism is broken. The Lie bracket of J with the
diffusion fields Dr creates new vector fields.

[J , Dr ], [Ds , [J , Dr ]], etc.

First-level brackets:

[J , Dr ] produce new diagonal-type fields with coefficients involving (qmi)m ̸=i .

Iterating:
[Ds , [J , Dr ]], [Ds2 , [Ds1 , [J , Dr ]]], . . .

creates a family of polynomial-weighted diagonal fields.
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Sufficient conditions for the detection case (Q ̸= 0)

Theorem 1 (Sufficient Condition 1)
The Hömander’s condition holds if: (1) The drift-difference vectors a1, ..., an are
pairwise distinct, and (2) For each coordinate i ∈ {1, ..., n}, there exists some
state m ̸= i , m ∈ {0, ..., n} such that qmi > 0.

Remark:
Proof: by construction.
Intuition: incoming information for every hypothesis.
(2) is much weaker than Q being irreducible.

Global v.s. Local
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Thm 1 condition (2): some examples

Condition (2) holds

0

1

2

3

Condition (2) fails

0

1

2

3
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Irreducibility vs Thm 1 condition (2)

Q irreducible (strongly connected)

0

1

2

3

Q not irreducible, but condition (2) holds

0

1

2

3
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Sufficient conditions for the detection case (Q ̸= 0)

If Theorem 1 fails?

If only one column i such that q0i = 0 and qmi = 0 for all m. If there exits
some p such that qp0 > 0, can use the same construction. Hypoellipticity
holds.
If there are strictly more than one such columns, this construction fails.
But can span a smaller space.
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Sufficient conditions for the detection case (Q ̸= 0)

Theorem 2 (Sufficient Condition 2)
Assume qmj = 0 for all m ̸= j and that there is at least one j such that qj0 > 0 (at
least one state can jump back to 0).
Define the n × (k + 2) augmented matrix Ã:

Ã =

a11 . . . ak1 ∥a1∥2 1
...

. . .
...

...
...

a1n . . . akn ∥an∥2 1


Then, dim Lie(DJ

0 , ..., Dk) = min(rank(Ã), n). Hypoellipticity holds if
rank(Ã) = n, which can never hold if n > k+2.
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Consequences of Hörmander

Parabolic Hörmander’s condition is immediate:
Define D̄0 := −∂t + D0, dim Lie{DJ

0 , D1, D2, . . . , Dk} = n, then
dim Lie{D̄J

0 , D1, D2, . . . , Dk} = n + 1.
It follows that the process (Φt)t≥0 is strong Feller.
This allows us to deal with t−dependent problems.

Hörmander holds in the (ϕ, x) coordinate:
The operator Lϕ,x for (ϕ, x)−dependent problems is hypoelliptic on
(0, ∞)n × Rk if and only if the operator L is hypoelliptic on (0, ∞)n.
This allows us to deal with x−dependent problems.

Yuqiong Wang (University of Michigan) Hypoellipticity of testing and detection Oct 25, 2025 21 / 28



Consequences of Hörmander

Parabolic Hörmander’s condition is immediate:
Define D̄0 := −∂t + D0, dim Lie{DJ

0 , D1, D2, . . . , Dk} = n, then
dim Lie{D̄J

0 , D1, D2, . . . , Dk} = n + 1.
It follows that the process (Φt)t≥0 is strong Feller.
This allows us to deal with t−dependent problems.

Hörmander holds in the (ϕ, x) coordinate:
The operator Lϕ,x for (ϕ, x)−dependent problems is hypoelliptic on
(0, ∞)n × Rk if and only if the operator L is hypoelliptic on (0, ∞)n.
This allows us to deal with x−dependent problems.

Yuqiong Wang (University of Michigan) Hypoellipticity of testing and detection Oct 25, 2025 21 / 28



Consequences of Hörmander

V is continuous and is the unique viscosity solution of (4) in P̊n+1.

min{ru − Lπu − h, u − g} = 0. (4)

Define the continuation region

C := {π ∈ P̊n+1 : V (π) > g(π)}

and the stopping region

D := {π ∈ P̊n+1 : V (π) = g(π)}.

The VI, continuation and stopping region are now only defined in P̊n+1.
The boundary is non-attainable: when staring from the interior, Π stays in
the interior a.s.
π ∈ ∂Pn+1: reduces to lower dimension, or extended as a limit.
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Value function regularity in C

We consider only in the continuation region C (where V > g).
If the Hörmander condition holds, and the running payoff h ∈ C∞(C), then
the value function V is also C∞(C).
If r , h ∈ C0,α(C) for α ∈ (0, 1), then the value function V ∈ C2,α(C).

But no "smooth fit" implied:
All these regularity results (C∞ or C2,α) hold only in the C.
In particular, hypoellipticity alone does not imply the "smooth fit" condition.
When do we have global C1? Need boundary points to be probabilistically
regular.
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Example 1: Detecting the change time in multiple coordinate

We observe an N-dim BM. At time η, K out of N coordinates gain a drift µ.
There are N Brownian coordinates and

(N
K
)

possible drifts.
The generator Q has a specific structure: only the first row is non-zero.

Q =


−
(N

K
)
λ λ . . . λ

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


1 The drift-difference vectors aj are all distinct. ✓
2 All q0i > 0 ✓ .

The operator is hypoelliptic by Theorem 1.

[cf. Ernst et al (2022)]
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Example 2: Signal tracking with regime switching

We observe Xt =
∑n

j=0 1θt =jλjt + Wt . with

Q =


−
∑n

i=1 qi q1 q2 . . . qn
p1 −p1 0 . . . 0
...

...
...

. . .
...

pk 0 0 . . . −pk

 (5)

with pi , qj > 0 for all i ∈ {1, k}, j ∈ {1, n}.
Application-wise: monitoring signals from a radar with different levels of
disorder. We can consider,e.g.,

inf
d
E[
∫ T

0
e−rtc(dt , θt)dt]

with

c(d , θ) = 1d=θ

n∑
i=1

c1(θ) + 1d ̸=θ

n∑
i=1

c2(θ).

The operator is hypoelliptic by Theorem 1 (same as Example 1).
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Example 3: Byzantine detection

A detection problem with possible corrupted sensor:
We observe two processes X 1, X 2:

X 1
t = µ01η>t + µ11η≤t + W 1

t ,

X 2
t = m01η>t + m11η≤t + W 2

t ,

with P0(η = 0) = p, P0(η > t) = (1 − p)e−rt , t ≥ 0.
The unknown state θ has 4 possiblilities:

θ0 =


(µ1, m1), both channels are affected at t = 0
(µ1, m0), X 1 is affected at time t = 0,
(µ0, m1), X 2 is affected at time t = 0,
(µ0, m0), no channels are affected at time t = 0,

(6)

We call it Byzantine because of the “Byzantine general problem”.
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Example 3: Byzantine detection

The drift matrix

A = −
[
µ1 − µ0 0 µ1 − µ0

0 m1 − m0 m1 − m0

]
has full rank (2), but the vector (∥a1∥2, ∥a2∥2, ∥a3∥2) is always in the
row-space of A.
The generator matrix Q as

Q =


0 0 0 0
λ −λ 0 0
λ 0 −λ 0
λ 0 0 −λ

 .

Theorem 3 applies, the augmented matrix

Ã = −

µ1 − µ0 0 (µ1 − µ0)2 1
0 m1 − m0 (m1 − m0)2 1

µ1 − µ0 m1 − m0 (µ1 − µ0)2 + (m1 − m0)2 1


has rank 3, Hörmander condition holds. In working progress.
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Thank you!
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