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@ Introduction and motivation



The classic 1D sequential testing

@ A stopper observes a 1D Brownian motion with drift
dXt == et + th, XO == O

with P(=1)=1-60=0=m € [0,1].
@ Want to test hypotheses for its drift, e.g., Hp: 0 =0vs H; : 0 = 1.
o We are penalized for making a mistake, and have a constant observation cost

C per unit time.
V= (inj)E[]P’(d #0) + c7].
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The classic 1D sequential testing

@ A stopper observes a 1D Brownian motion with drift
dXt == et + th, XO == O

with P(=1)=1-60=0=m € [0,1].
@ Want to test hypotheses for its drift, e.g., Hp: § =0 vs H; : 0 = 1.

o We are penalized for making a mistake, and have a constant observation cost
C per unit time.
V= (incf!)E[]P’(d #0)+ c7].

@ “Sequential testing problem”, can be formulated as an optimal stopping
problem in the posterior probability process, as

V(r) = ir;fE[I_IT A1 =)+ cT]

where M, := P(0 = 1|FX).

@ This 1D problem can be formulated as a free-boundary problem and solved
explicitly [cf. Shiryaev (1978)].
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A challenge when in higher dimensions: degeneracy

Multi-dimension setting? many possibilities. . .

Let's for example, look at the following problem:

@ Consider now the Brownian motion has 3 possible drifts instead of 2:
P(6 =i)=m,ic{0,1,2}.

e The sufficient statistics in this case is (M*, M2).

@ There are two underlying coordinates but only one underlying Brownian
source. The operator is degenerate elliptic.

@ Can be resolved: M are functions of (t, X;). Can formulate it in the
(t,x)—coordinate: uniformly parabolic [cf. Zhitlukhin and Shiryaev (2011)].
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A challenge when in higher dimensions: degeneracy

What about the following cases?

@ When 6 can change its value at exponential times. e.g. classic quickest
detection:
dXt - 1t29dt —+ th
with P(6 = 0) = 7 and P(0 > t|§ > 0) = et
@ i.e., 0 changes from 0 to 1 then never changes back.

@ Want to declare the change point asap without a false alarm:

V= ir;f{]P’(T <0)+E[(t—0)*]}
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A challenge when in higher dimensions: degeneracy

What about the following cases?

When 6 can change its value at exponential times. e.g. classic quickest
detection:
dXt - 1t29dt —+ th
with P(6 = 0) = 7 and P(0 > t|§ > 0) = et
i.e., 0§ changes from 0 to 1 then never changes back.

Want to declare the change point asap without a false alarm:
V =inf{P(r < 0) + E[(r — 0)"]}

Problem: the posterior process I := P(6 < t|F;) depends on the whole
path. No longer possible to formulate it in (¢, x).

Can solve in 1D, can be degenerate in [1 when extended to higher
dimensions. e.g., 6 changes to two possible values.
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Beyond testing and detection: partial information

@ When the problem is X—dependent. More applications.

@ e.g., a "hiring problem” application:
Xi = 0t + W,
and the payoff upon stopping at 7 being
e " X,.

After filtering, the problem has (X, ) as its state.
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Beyond testing and detection: partial information

@ When the problem is X—dependent. More applications.

@ e.g., a "hiring problem” application:
Xi = 0t + W,
and the payoff upon stopping at 7 being
e " X,.
After filtering, the problem has (X, ) as its state.

These motivate us to study properties of these degenerate cases.
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e Problem formulation



Problem formulation

The ingredients of our problem:
@ A continuous time Markov chain (6;)¢>¢ taking values in 7n:={0,1,...,n}
with generator Q@ = (gjj)i jen,
o k—dimensional Brownian motion W = (W?,... W¥) independent of 6.

e k< n.
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Problem formulation

The ingredients of our problem:
@ A continuous time Markov chain (6;)¢>¢ taking values in 7n:={0,1,...,n}
with generator Q@ = (gjj)i jen,
o k—dimensional Brownian motion W = (W?,... W¥) independent of 6.
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Problem formulation

The ingredients of our problem:
@ A continuous time Markov chain (6;)¢>¢ taking values in 7n:={0,1,...,n}
with generator Q@ = (gjj)i jen,
o k—dimensional Brownian motion W = (W?,... W¥) independent of 6.

e k< n.
We refer to

o @ = 0: the “testing case”,
@ @ # 0: the "detection case”
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Problem formulation

We consider

dXe =Y lgjNjdt +dW,, Xo =0. (1)
j=0

and stopping problems of the form

V = supE, [e‘fo ()95 . ) +/ e Jo (% e | ()
TET 0

@ Here g, h, r are continuous, r >0, \; € R¥, j € {0,1,...,n}.

@ The posterior I1 lives on the n-dimensional simplex P, 1 with

N =P,(0,=i|FX) foric{0,...n}
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Problem formulation

@ By standard filtering theory, I, has dynamics:

n
dit, = qyNidt + (A = Ar) - dWe
i,_/ Diffusion from W;
Drift from Q

o where X, = 37 \iTTi, and W, is the innovation process.
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Problem formulation

@ By standard filtering theory, I, has dynamics:

n
dit, = qyNidt + (A = Ar) - dWe
i,_/ Diffusion from W;
Drift from Q

o where X, = 37 \iTTi, and W, is the innovation process.
@ The stopping problem is governed by the infinitesimal generator L, for this
[1; process

1 o _ _ o
Lr=g Yo mm =N (Vg

i,j=0

Diffusion (degenerate)

4 0
=+ Z QUWiaiﬂj

ij=0
—_——
Drift (from Q)

o It degenerates everywhere.
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Geometric intuition of degeneracy (n =2, k

@ [1; lives on the n—dim simplex.

@ Observations are driven by a
k—dimensional Brownian motion. (0,0,1)

@ Local picture: at each interior point
7, randomness initially acts only in a
k—dllmens.lonal subspace of the 1D diffusion
n—dimensional tangent space. irection

(1,0,0) (0,1,0)
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Hypoellipticity and the Hérmander's condition

@ Question: Even if the operator is not elliptic, can we still recover regularity
(e.g., smoothness) of the value function?

@ Our hope: Hypoellipticity (the property that u smooth if Lu smooth).

@ Intuition: The operator may be degenerate, but the randomness "spreads"
through the system.
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Hypoellipticity and the Hérmander's condition

@ Question: Even if the operator is not elliptic, can we still recover regularity
(e.g., smoothness) of the value function?

@ Our hope: Hypoellipticity (the property that u smooth if Lu smooth).

@ Intuition: The operator may be degenerate, but the randomness "spreads"
through the system.

@ The "missing directions" from the k-dimensional diffusion might be restored
via iterated Lie brackets.

Hoérmander (1967)
Write L, = Z,::l D? + Dy, where D;'s are C*° vector fields. If

Lie(Do, Dl, coey DK)

spans the tangent space of the simplex at every point in int(P,1), the
Hoérmander's condition is satisfied, and the operator £ is hypoelliptic.
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o [cf. Caffarelli and Friedman (1981)] studied the problem where n = k, with
gmr)=ag(l—mo)A---Nan(l—m,) h(r)= Z GiT.
i=0

@ They commented on the case where k < n and gave the 1D, 3 drift example.
o Few literature in the filtering field: [cf. Peskir (2022), Ernst et al (2022)]

Our goal: characterize when the Hérmander's condition holds for L.
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A better coordinate: P,

@ We do a change of coordinate to the posterior likelihood process ®;:

"
Oo=pp fori=lo.n (Note: ®3=1)
e Why ¢?

@ This map is a C*-diffeomorphism from int(Pp+1) — (0, 00)".
Hypoellipticity is preserved.
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A better coordinate: P,

@ We do a change of coordinate to the posterior likelihood process ®;:

"
Oo=pp fori=lo.n (Note: ®3=1)
e Why ¢?

@ This map is a C*-diffeomorphism from int(Pp+1) — (0, 00)".
Hypoellipticity is preserved.

o Define a; e RF fori=1,...,n a;:= X\ — Ao, and £ = a; - 3},

dcbi - (Z ¢ (qml qm0¢: Y Z )N md)ld)m) dt+ d)’al th (3)

m=1

with ®) = ¢; and Y, := 37 ®..
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Sum-of-squares decomposition

Denote by y(¢) = Z, o @ir the generator L for the & process is:

i 1 9
sz ¢,8¢ e @;zm@%

ij=1

- Z Z(% qod;) b5 - 8 .

j=1 i=0

K
. oA, 1 o .
We can write L = Dy + 5 E D; with
r=1
@ Diffusion fields.

n

D, := Za,-, @i O, where a; = (a1, . . -, aix)-
i=1
@ Drift and switching fields.

Dy = )sz@a@ 2Zna,n as,awzzu qiody) 61 s,

j=1 i=0
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© Main Results



Main Results: characterization in the testing case (Q=0)

We first write £ in the "sum of squares" form £ = Dy + 3 Zle D?.
o Key observations:
@ The diffusion fields commute:
[Dr,D,)] =0 forall r,ue{1,.., k}
@ The bracket of the drift and a diffusion field stays in the diffusion span:

k
[Do, Du] = c(¢)Ds € span{Dy, ..., Ds}

s=1
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Main Results: characterization in the testing case (Q=0)

We first write £ in the "sum of squares" form £ = Dy + 3 Zle D?.
o Key observations:
@ The diffusion fields commute:
[Dr,D,)] =0 forall r,ue{1,.., k}
@ The bracket of the drift and a diffusion field stays in the diffusion span:

k
[Do, Du] = c(¢)Ds € span{Dy, ..., Ds}

s=1

Theorem 0

Let @ =0. Let A= (ay,...,a,) € RF*",

If n > k41, the Hémander's condition FAILS.

If n = k+1, the Hémander's condition HOLDS if and only if rank(A) = k and
the vector (||a1]|?, ---, ||an]|?) is not in the rowspace of A.
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Sufficient conditions for the detection case (Q # 0)

o Add the "switch" field J := 327" | 377 1(qij — Gi00;) i,
@ The Key: The closure mechanism is broken. The Lie bracket of J with the
diffusion fields D, creates new vector fields.

[J,D], [Ds,[4,D/]], etc.
o First-level brackets:
[J,D;] produce new diagonal-type fields with coefficients involving (qmi)msi-

o lterating:
[DS’[J’ Df]]’ [Dsza[Dsla[Ja Dr]]],

creates a family of polynomial-weighted diagonal fields.
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Sufficient conditions for the detection case (Q # 0)

Theorem 1 (Sufficient Condition 1)

The Hémander's condition holds if: (1) The drift-difference vectors ay, ..., a, are
pairwise distinct, and (2) For each coordinate i € {1, ..., n}, there exists some
state m # i, m € {0, ..., n} such that g,,; > 0.

Remark:
@ Proof: by construction.
@ Intuition: incoming information for every hypothesis.

@ (2) is much weaker than @ being irreducible.

Global V.S. Local
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Thm 1 condition (2): some examples

Condition (2) holds Condition (2) fails

o} o

of Jo ofific
o ©
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Irreducibility vs Thm 1 condition (2)

Q irreducible (strongly connected)  Q not irreducible, but condition (2) holds

Ao o

OOy

O Q,

O
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Sufficient conditions for the detection case (Q # 0)

If Theorem 1 fails?

@ If only one column i such that go; = 0 and g, = 0 for all m. If there exits
some p such that gpo > 0, can use the same construction. Hypoellipticity
holds.

@ If there are strictly more than one such columns, this construction fails.

@ But can span a smaller space.
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Sufficient conditions for the detection case (Q # 0)

Theorem 2 (Sufficient Condition 2)

Assume gmj = 0 for all m # j and that there is at least one j such that gjo > 0 (at
least one state can jump back to 0). B
Define the n x (k + 2) augmented matrix A:

ai] .- a1 ||al||2 1

e
Il

aln ..o akn lanl? 1

Then, dim Lie(D{, ..., Dk) = min(rank(A), n). Hypoellipticity holds if
rank(A) = n, which can never hold if n > k+2.
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Consequences of Hérmander

Parabolic Hérmander’s condition is immediate:
o Define Dy := —0; + Do, dim Lie{D{, D1, D,,..., D} = n, then
dim Lie{Dg, D1,Dy,...,Dx} = n+ 1.
o It follows that the process (®;);>o is strong Feller.
@ This allows us to deal with t—dependent problems.
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Consequences of Hérmander

Parabolic Hormander’s condition is immediate:

o Define Dy := —0; + Do, dim Lie{D{, D1, D,,..., D} = n, then
dim Lie{Dg, D1,Dy,...,Dx} = n+ 1.

o It follows that the process (®;);>0 is strong Feller.
@ This allows us to deal with t—dependent problems.

Hormander holds in the (¢, x) coordinate:

@ The operator L, « for (¢, x)—dependent problems is hypoelliptic on
(0,00)" x R¥ if and only if the operator L is hypoelliptic on (0, 00)".
@ This allows us to deal with x—dependent problems.
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Consequences of Hérmander

V is continuous and is the unique viscosity solution of (4) in Pois.

min{ru — Lru—h,u—g} =0. (4)
Define the continuation region

C:={me Py V(r)>g)}
and the stopping region

D:={re P,y V(r)=g)}

@ The VI, continuation and stopping region are now only defined in I5n+1.

@ The boundary is non-attainable: when staring from the interior, I stays in
the interior a.s.

@ 7™ € OP,41: reduces to lower dimension, or extended as a limit.
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Value function regularity in C

We consider only in the continuation region C (where V > g).

o If the Hérmander condition holds, and the running payoff h € C°°(C), then
the value function V is also C*(C).

e If r,h e C%%(C) for a € (0,1), then the value function V € C%%(C).
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Value function regularity in C

We consider only in the continuation region C (where V > g).

o If the Hérmander condition holds, and the running payoff h € C°°(C), then
the value function V is also C*(C).

e If r,h e C%%(C) for a € (0,1), then the value function V € C%%(C).

But no "smooth fit" implied:
@ All these regularity results (C> or C>%) hold only in the C.
@ In particular, hypoellipticity alone does not imply the "smooth fit" condition.

@ When do we have global C'? Need boundary points to be probabilistically
regular.
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© Examples



Example 1: Detecting the change time in multiple coordinate

o We observe an N-dim BM. At time 7, K out of N coordinates gain a drift u.
@ There are N Brownian coordinates and (%) possible drifts.

@ The generator Q has a specific structure: only the first row is non-zero.

—(OX A X
0 0 ... 0

Q: .
0 0 0

@ The drift-difference vectors a; are all distinct. v
Q Algi>0 V.

@ The operator is hypoelliptic by Theorem 1.

[cf. Ernst et al (2022)]
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Example 2: Signal tracking with regime switching

o We observe X; = EJ’;O lg,—j\jt + W;. with

>4 @ G ... G
p1 —pP1 0 cee 0

Q= . : ) ) (5)
Pk 0 0o ... — Pk

with p;, q; > 0 for all i € {1, k},j € {1, n}.

@ Application-wise: monitoring signals from a radar with different levels of
disorder. We can consider,e.g.,

|nfE[/ dt,et dt]
with

C(O’7 0) =149 Z 61(9) + Laze Z C2(9).
i=1 i=1

@ The operator is hypoelliptic by Theorem 1 (same as Example 1).
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Example 3: Byzantine detection

A detection problem with possible corrupted sensor:
@ We observe two processes X1, X2:

Xlil = /L0177>t + /il]-ngt + thv
X,_L2 = m01n>t + mllngt + Wt27

with Po(n =0)=p, Po(n>t)=(1—p)e ™, t>0.
@ The unknown state 0 has 4 possiblilities:

(11, m1), both channels are affected at t =0
(u1,mo), X1 is affected at time t =0,

(o, M), X2 is affected at time t =0,

(p0, mo), no channels are affected at time t = 0,

0o = (6)

We call it Byzantine because of the “Byzantine general problem”.
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Example 3: Byzantine detection

@ The drift matrix

A__|:N1_M0 0 Ml—uo}
0 m —mg mp — Mg

has full rank (2), but the vector (||a1]?, ||a2|?, ||as||?) is always in the
row-space of A.

@ The generator matrix @ as

0 O 0 0

A =X 0 0

Q= A0 =X 0

A0 0 -

Theorem 3 applies, the augmented matrix

. M1 — Mo 0 (u1 — po)? 1
A=— 0 m; — Mg (m1 — m0)2 1
pr—po my—mo  (p1— po)® 4 (my— mp)® 1

has rank 3, Hérmander condition holds. In working progress.
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Thank you!
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