The coin tossing problem $(H T 21)$

Problem set-up. Toss a fair win formany times,

$$
\left\{Z_{1}, Z_{2}, \ldots .\right\} . Z_{i} \in\{H, T\} .
$$

Define $\tau_{1}:=\inf \left\{n: Z_{n-1}=H, Z_{n}=H\right\}$.

$$
T_{2}:=\inf \left\{n: \quad Z_{n-1}=H, Z_{n}=T\right\}
$$

Question : Does $E\left[\tau_{1}\right]$ equal $E\left[\tau_{2}\right]$?
Inturam : \{HTS and \{HH\} both happen with $\frac{1}{4}$ probability.

$$
\text { so } E\left[\tau_{1}\right]=E\left[\tau_{2}\right]
$$

Truth: $\quad 6=E\left[\tau_{1}\right] \neq E\left[\tau_{2}\right]=4$.

Construct a Markov chain for $\{H, H\}$.

Station state.
Let $s=E\left[\tau_{s \rightarrow 2}\right] \rightarrow$ what ne want.

$$
a=E\left[\tau_{1 \rightarrow 2}\right] .
$$

$$
\left\{\begin{array}{l}
s=1+\frac{1}{2} s+\frac{1}{2} a \\
a=1+\frac{1}{2} s+\frac{1}{2} \times 0
\end{array} \quad \Rightarrow s=6\right.
$$

Similarly, wonstruct a chain for $\{H, T\}$.

when fails, start from the middle of the chain.
\Rightarrow shorter time of hrtify.
Similarly, $E\left[\tau_{s \rightarrow 2}\right]=\tilde{s}^{2} . \quad E\left[\tau_{1 \rightarrow 2}\right]=\tilde{a}$.

$$
\left\{\begin{array}{l}
\tilde{s}=1+\frac{1}{2} \tilde{s}+\frac{1}{2} \tilde{a} \\
\tilde{a}=1+\frac{1}{2} \tilde{a}+\frac{1}{2} \times 0
\end{array} \quad \Rightarrow \tilde{s}=4\right.
$$

Remark. Ask a question to a random person:
probability of $\{H H H H\}$ and $\{H T H T\}$ which one is bigger?
The random person probably says. $\{H T H T\}$
We know that $P(\mid H H H H\})=P(H+H T 3)=\frac{1}{2^{4}}$
Somehow this is also wrrect in the sense the os it takes longer (on average) to see $\{H H H H\}$

Now another question:
What if we want to see "HTHHTHTH"?

Similarly, construct a Markov chain.

$$
\begin{array}{lll}
s=1+\frac{1}{2}(s+a) & c=1+\frac{1}{2}(d+b) & f=1+\frac{1}{2}(g+d) \\
a=1+\frac{1}{2}(a+b) & d=1+\frac{1}{2}(e+a) & g=1+\frac{1}{2} s \\
b=1+\frac{1}{2}(c+s) & e=1+\frac{1}{2}(f+s) &
\end{array}
$$

$$
S=266 .
$$

$$
\left(2^{1}+2^{3}+2^{8}=266\right)
$$

$$
{ }^{n} H^{n}{ }^{n} H T H{ }^{n} \quad{ }^{n}=\cdots{ }^{n}
$$

What if we want to see longer sequence? System grows. computationally complicated.

Trick: Constructing a martingale. (Shuo-Yen $L_{i}, 1980$) (Like a lot of ocher cases in probability).
"Gambler's team"
Setting. Want to determine $\left\{\begin{array}{llllll}x_{1} & x_{2} & x_{3} & \ldots & x_{m}\end{array}\right\} . x_{i} \in\{1,0\}$. (H, T)

- We open a casino. we are the dealer Each round we toss a coin.
ono come: z_{1}, z_{2},
Each flip, one more player
- Invite players. $P_{0}, P_{1}, P_{2}, \ldots$ to bet on my daily activity. player is enters the casino just before round it 1.
- Each plages entes 1 kr of wealth. they only leave if They host everythif / seen the sequence $\left\{x_{1}, \ldots, x_{m}\right\}$.
- At first round, Pi bets $1 k_{r}$ on $\left\{Z_{i+1}=x_{1}\right\}$.

$$
\left[\begin{array}{cl}
2 \times 1, & z_{i=1}=x_{1} \\
0, & \left(\frac{1}{2}\right) \\
z_{i+1}=1-x_{1} & \left(\frac{1}{2}\right)
\end{array}\right.
$$

. Ind round. if in the game bets 2 on $\left\{Z_{i+2}=x_{2}\right\}$.

$$
\left\{\begin{array}{cl}
2 \times 2, & z_{i+2}=x_{2} \tag{1}\\
0, & z_{i+2}=1-x_{2}
\end{array}\right.
$$

"Fair game"!

After some rounds, someone gets lucky and sees the pattern
\rightarrow leaves the game.
After k rounds. Net gain: Before seeing the sequence.

$$
\begin{cases}2^{k}-1 & \text { if still in the game. } \\ -1 & \text {, othermbe }\end{cases}
$$

Let $G_{n}^{i}=$ Net gain of PL is after round n.
$\delta_{n}^{i}=\mathbb{1 1}_{\text {PL }}$ in gave a feer round n.

$$
G_{n}^{i}=\left(2^{n-i}-1\right) \delta_{n}^{i}+\left(1-\delta_{n}^{i}\right)=2^{n-i} \delta_{n}^{i}-1
$$

My gain $M_{n}=\sum_{i=0}^{n-1} G_{n}^{i} \quad$ (moneycollected by me up to time t)
Fact. M is a martingale. $\quad M_{0}=0$

$$
\mathbb{E}\left[M_{n} \mid M_{n-1}, \ldots, M_{0}\right]=M_{n-1}
$$

(M_{n} only depends on the history up to $n-1$,
odds are fair for each player).

Doob's optional sampling theorem"
$M_{0}=E\left[M_{\tau}\right]$. for some stoppry tine τ.

$$
\text { for } \begin{aligned}
\tau \text { sit } & E[\tau]<\infty \text { and } \\
& E\left[\left|M_{n+1}-M_{n}\right|\right]<c . \text { ais. }
\end{aligned}
$$

Define $\tau:=\operatorname{iuf}\left\{n: z_{n-m+1}=x_{1}, \ldots, z_{n}=x_{m}\right\}$
Obs. (1) $\tau<m T$. where

$$
\begin{aligned}
& T:=\operatorname{ing}\left\{n: Z_{m n+1} \ldots Z_{m(n+1)}=\left\{x_{1} \ldots, x_{n}\right\}\right\} \\
& T \sim \operatorname{qeo}(.) \\
& \Rightarrow E[\tau]<\infty .
\end{aligned}
$$

(2) At any time n. at most m people bet ry

Total incremeroc $<m 2^{m}$.

$$
\begin{aligned}
0= & M_{0}=E\left[M_{\tau}\right]=E\left[\sum_{i=0}^{\tau-1}\left(2^{\tau-i} \delta_{\tau}^{i}-1\right)\right] \\
\Rightarrow & E[\tau]=E\left[\sum_{i=0}^{\tau-1} 2^{\tau-i} \delta_{\tau}^{i}\right] \\
&
\end{aligned}
$$

what we want.
Fact: At time τ. RUS B deterministic.!
eg. "HTHT"
At time e, how many plages are stein in the game?
well at most 4 !

	Want	got	δ
$P_{\tau-1}$.	H	T	0
$P_{\tau-2}$.	$H T$	$H T$	1
$P_{\tau-3}$.	$H T H$	$T H T$	0
$P_{\tau-4}$	-	-	1.

$$
\text { RHO }=2^{e-(\tau-2)}+2^{\tau-(\tau-4)}=2^{2}+2^{4} .
$$

In the general case. $P L_{\tau-i}$ is only in the game f the frost i letters are the same as the last i letters.

$$
E[\tau]=\sum_{i=0}^{\tau-1} 2^{\tau-i} \delta_{\tau}^{i}
$$

Check.

$$
\begin{aligned}
& { }^{n} H H^{n} \quad 2^{1}+2^{2}=6 \\
& { }^{n} H T^{n} \quad 2^{2}=4 \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

