Lecture 1 . Probability Preliminaries

- Definition 1:1 (Probabrilry space:)

A probability space 13 a triple (Ω, F, \mathbb{P}). where

- Ω : Set of elementary outcomes ω.
- F: a σ-algebra (ie: $\Omega \in \mathcal{F}$, closed under complements countable unions)
(Set of events, collection of subsets of Ω)
$\Rightarrow(\Omega, F):$ mole space
(Ω, F, μ) : measure space.
if μ is a prob. measure \Rightarrow prob space.
- $\mathbb{P}:$ a probability measure: $f \rightarrow[0,1] . \mathbb{P}(\Omega)=1$.
(Kolmogorov axioms).
E.X.lil
\rightarrow Countable

$$
\begin{aligned}
& \Omega=\{H H, H T, T H, T T,\},|\Omega|=4 . \\
& \mathcal{R}=\{\{H H, H T\},\{T H, T T\}, \Omega, \phi\} \\
& \mathbb{P}=\text { eng. fair. }
\end{aligned}
$$

EXILi2. (Toss infinitely many coins \rightarrow Uncentable. $\Omega=[H, T]^{\infty} \quad /$ each single outdone is an inf rice bray string.

$$
\begin{aligned}
& F=(\text { e.g })^{\text {q F Firt }} \text { is } H^{4}=\{\{H H\}\{[H] \cdots\}, \ldots\} \\
& \mathbb{P}=\text { e.g. } \mathbb{P}(A)=\frac{1}{2}
\end{aligned}
$$

Dof. lll.2 (Random variable).
Ler $(\Omega, \mathcal{F}, \mathbb{P})$ be a probabilry space, a random variable $X=\Omega \rightarrow \mathbb{R} \quad$ is an J-mble function i.e.
$w \rightarrow X(w)$

$$
X^{-1}(A):=\{w \in \Omega: X(w) \in A\} \in G .
$$

ton every Borel set A.

Remant. A r.v.induces a prob-measure:

$$
\mathbb{P}_{x}(A)=\mathbb{P}\left(X^{\epsilon-1}(A)\right)=: \mathbb{P}(X \in A)
$$

$\left[\right.$ One can get a new probabilizy space: $\left(\Omega, F, \mathbb{P}_{x}\right)$.]
\mathbb{P}_{x} distributron of $\left.X, F_{X}(x):=\mathbb{P}_{x}(1-\infty ; x]\right)$

We say that twe riv's $x \stackrel{\text { ass }}{=}$ if

$$
\mathbb{P}(\{w \in \Omega: X(w) \neq Y(w)\})=0 .
$$

(Note that acs. is strongen than " d ".
$X \stackrel{d}{=} Y$ if $\mathbb{P}(X \in A)=\mathbb{P}(Y \in A)$ for all A.

Notation: $\{X=x\}=\{\omega \in \Omega: X(\omega)=x\}$.

Def 1.1 .3 (Expectation).
On (Ω, F, \mathbb{P}), the expectation of X is defined as

$$
\begin{aligned}
&-\mathbb{E}[X]:=\int_{\Omega} X(w) d \mathbb{P}(w)=\int_{\mathbb{R}} x d \mathbb{P}_{x}(x) \\
&=\int_{\text {n }} x x d \mathbb{R} \\
& \text { notation }
\end{aligned}
$$

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be Borel-mble, integrable, then

$$
\mathbb{E}[f(x)]:=\int_{\Omega} f(x(w)) d \mathbb{P}(w)=\int_{\mathbb{R}} f(x) d P_{x}(x) .
$$

- The conditional expectation of X given evert A is

$$
\mathbb{E}[x \mid A]=\frac{\mathbb{E}\left[X 1_{A}\right]}{\mathbb{P}(A)}
$$

eng. $\mathbb{E}\left[X \mid Y=y_{1}\right]$ wondicional expectation on the cert $\left\{\omega \in \Omega: Y(\omega)=y_{i}\right\}$

$$
\left.\mathbb{E}\left[X \mid G_{L}\right]=\sum_{k=1}^{n} \mathbb{E}|X| A_{n}\right] 1_{A_{k}} \quad, \quad G\left(A_{1}, \ldots, A_{n}\right)=G .
$$

- Let $G \subset F$. Londrumal expectation $E[x \mid G]$ is the unique ten : $\Omega \rightarrow \mathbb{R}$.sit.
i) $\mathbb{E}[x \mid G]$ is G-able
ii) $\int_{A} \mathbb{E}[x \mid g] d \mathbb{P}=\int_{A} x d P$ for all $A \in G$.
- Properties of londitroral expectation
i). $\mathbb{E}[\mathbb{E}[X \mid G]]=\mathbb{E}[X]$.
ii) If X is G-mile: $\mathbb{E}[X \mid G]=X$.
ii) If $x \Perp G, \mathbb{E}[x \mid G]=\mathbb{E}[X]$

Def 1.1.4. (Stochastic Process.).
A.S.P. is a collection of r, v, s. indexed by $t \in T$

In this course, we consider $\tau=[0, \infty)$.

- For each t, we have a riv.

$$
w \rightarrow X_{t}(w) \quad, w \in \Omega
$$

- For each w, we have a trajectory

$$
t \rightarrow X_{t}(w), t \in T
$$

eng.

Alternatively, X can also be seen as a map

$$
X: T \times \Omega \rightarrow \mathbb{R}
$$

Notations, $X(t), X_{t}, X_{+}(w), X(t, w) \ldots$

- Def 1.115. (Brownian motrin)

A stochastre process W called a B.M or Wiener process of
i) $W(0)=0$
ii) W has continuous trajectories.
iii) W has independent increments
(ie. if $t_{1}<t_{2}<t_{3}<t_{4}, \quad W\left(t_{4}\right)-W\left(t_{3}\right) \Perp W\left(t_{2}\right)-W\left(t_{1}\right)$).
iv). Increments are Gaussian, and
if $s<t, W(t)-W(s) \sim N(0, t-s)$
Variance.

- An-dim $B M$. B $W=\left(W_{1}, \ldots, W_{n}\right)$. where $W_{1} \ldots, W_{n}$ are manually independent:

Def . 1116 (Filtration).
(problein i we never know what w we drawn, only what happened up to now)

A filtration $\left\{\left.F_{t}\right|_{t \geqslant 0}\right.$ is a family of increaen sin- σ-algebras of $F_{1} F_{s} \subset J_{t}$ for $s<t$ then we write
$\left(\Omega, f, F_{*}, \mathbb{P}\right)$ as a filtered probabrling space.

- A Y/N question that can be answered at time f can be answered at any later time.

Ex. 1.1 again.

$$
\Omega=\{H H, H T, T H, T \top\}
$$

Let $X_{i}=$ result of the it tors. $\in\{0,1\}$.
Assume "First is Head"

$$
\begin{aligned}
& X_{1}\{H H\}=X_{1}\{H T\}=1, X_{1}(T H)=X_{1}(T T)=1 . \\
& F_{1}=\delta\left(X_{1}\right)=\{\{H H, H T\},\{T H, T T\}, \Omega, \phi\}
\end{aligned}
$$

Denote the filtration generated by x up to tine t by $f_{t}{ }^{X}$
"The information of X up to t ".

- If by obsennf x up to $f^{\left(f_{t}^{x}\right)}$ we can determine $\neq A \in \mathcal{F}$ has -cured or not, we say $A \in F_{t}^{x}$
- Let Z be a riv. and we con determine the value of Z by F_{t}^{Y}.
we say Z is F_{t}^{x}-mile, $z \in F_{t}^{x}$
- If X, Y are sip. and $Y_{t} \in F_{t}^{X}$ for all $t \geqslant 0$ we say Y is adapted to $F^{x}, Y \in \mathcal{F}^{x}$.
egg. $Y_{t}=\sup _{0 \leqslant s \in t} X_{s} \in f_{t}^{X}$

$$
\therefore Y_{t}=\sup _{0<s \varepsilon 3 t} X_{s} \quad \& F_{t}^{X}
$$

\rightarrow need to look into the future.

Def 1.1.7 (Stopping time)
Let $\left\{F_{t}\right\}_{t \geqslant 0}$ be an increasing family of σ-algebras, A tan $\tau: \Omega \rightarrow[0, \infty)$ is called a stopping time wirit $\left\{F_{*}\right\}$ if

$$
\{w=\underbrace{\tau(w) \leq t\} \in J_{+}}_{L_{\text {B B a riv }}} \text {, for all }+
$$

- Remark TFAE.
$i)$ is a F_{*} - stopping time, ii) $\mathbb{1}_{[0, \tau]}$ is F_{*}-adapted.
properties If I_{1}, τ_{2} are F_{0}-stopping times.
i). $\tau_{1} \wedge \tau_{2}$ is also a f_{0} - Stopping time
ii $\tau_{1} \vee \tau_{2}$ - \qquad
iii) $\tau_{1}+\tau_{2}-1$ \qquad

Exercise 1: Prove the above statemars.
Exerecse 2. Prove that $\tau_{1}-\tau_{2}$ is NOT a stepprify time,
E. $x, 113$ i). Every detervinistre t is a stopping tie

$$
\{f \varepsilon t\} \in\{\phi, \Omega\}
$$

ii): (Hrtiy times / Ex* times).

Let X_{t} be a sip, in \mathbb{R}^{n}, Let $X_{0} \in D \subset \mathbb{R}^{n}$, we个
defme the first exit time of X from D as deferministre.
eng.

$$
\tau_{D}:=\ln f\{t>0: X(t) \notin D\} .
$$

Leo $A \in \mathbb{R}^{n}$ be closed and non-empty, the first hi*tip tine of F by X is defined as $\tau_{\text {th }^{n}, F \text {. }}$

Cig. Leo $T(w):=\sup \left\{t>0: X_{t}(w)=C\right\}$ B NOT a sta time

