Lecture 12. American options.

Last time. Basic optimal stopping theory \Rightarrow tree bor problems.
Today. Examples.

Example 12.1. (Perpetual American put option).
We wish to find the optimal exercising tine of an American put with strike $k>0$, and with the underlying described in the riskneutral setting by.

$$
d X_{t}=(r-\delta) X_{t} d_{t}+\sigma d B_{t} .
$$

where $r>0$ is the risk-free rate. $\delta \in[0, r]$ is the dividend. We can exercise it at anytime $t \geqslant 0$, it never expires.

$$
\text { payoff at } t:\left(k-x_{t}\right)^{+} \text {. }
$$

Step 1. Write down the value function, C, D and τ^{*}

$$
\begin{aligned}
V(x)= & \sup _{\tau} \mathbb{E}_{x}
\end{aligned} \underbrace{}_{\substack{\text { risk-nentral } p \\
e^{-r \tau}} k} \quad \text { "fair price". }
$$

- What does the continuation region C. look like?
"When it's good enough, stop
when $x \geqslant k$. should always wait! $\Rightarrow[k, \infty) \subset C$. when $x<k . \quad g(x)>0$. but cant wait forever because of the penalisation in time.

There must be a threshold $b \in(0, k)$. sit.

$$
C=(b, \infty), D=(0, b]
$$

- What is the optimal strategy τ^{*} ?

$$
\tau^{*}=\inf \left\{t \geqslant 0: X_{t} \in D\right\}
$$

Step 2. Write down the free-boundary problem.
Assume candidate $\hat{\imath}$ solves.
(*)

$$
\begin{aligned}
&(r-\delta) x \hat{V}_{x}+\frac{1}{2} \sigma^{2} x^{2} \hat{V}_{x x x}-r \hat{V}=0 \quad x>b \\
& \hat{V}(x)=k-x . \quad x \leq b . \\
& \zeta_{x \leq b<k} \\
& \hat{V}_{x}(b)=-1 . \\
& \downarrow
\end{aligned}
$$

"Smooth fir".

Step 3 Make an ansate and solve (*).
Ansate: $\hat{V}(x)=x^{\gamma}$. ping in (x) :

$$
\begin{aligned}
& (r-\delta) \gamma X^{\gamma}+\frac{1}{2} \sigma^{2} \gamma(\gamma-1) x^{t}-r X^{t}=0 \quad, x>b \\
& \Rightarrow \frac{1}{2} \sigma^{2} \gamma^{2}+\left(r-\delta-\frac{1}{2} \sigma^{2}\right) \gamma-r=0 .
\end{aligned}
$$

quadrate eqn, roosts with opposite signs!

$$
\gamma_{ \pm}=\frac{1}{\sigma^{2}}\left(-\left(r-\delta-\frac{1}{2} \sigma^{2}\right) \pm \sqrt{\left(r-\delta-\frac{1}{2} \sigma^{2}\right)^{2}+2 \sigma^{2} r}\right)
$$

when $\gamma_{-}<0$. (obvious).

$$
\begin{aligned}
& \partial_{+} \geqslant 1 . \quad(\text { polynomial }(1)=-\delta \leq 0) . \\
& L_{t}=1 \text { when } \delta=0
\end{aligned}
$$

- The general solution for \hat{V} is

$$
\begin{aligned}
& \hat{V}(x)=C_{1} x^{\partial+}+C_{2} x^{\alpha-} \\
& \text { As } x \rightarrow \infty \cdot \hat{V}(x) \rightarrow 0 \quad \Rightarrow C_{1}=0
\end{aligned}
$$

(Why? When current stock price is high, it's very unlikely to drop below k).

$$
\Rightarrow \hat{V}(x)=C_{2} x^{x-} .
$$

- "Lontinnous fit " bor condition.

$$
C_{2} b^{\partial-}=\hat{V}(b)=g(b)=k-b .
$$

$$
\Rightarrow C_{2}=\frac{k-b}{b^{2-}}
$$

- "Smooch frit". bor condition

$$
\begin{aligned}
& \left(C_{2} \gamma_{-}\right) b^{\alpha_{-}-1}=\hat{V}_{x}(b)=g_{x}(b)=-1 . \\
& \Rightarrow \quad \begin{array}{l}
b=\frac{k \gamma_{-}}{\gamma_{-}-1} \\
\hat{V}(x)= \begin{cases}k-x, & x \in(0, b] . \\
\frac{k-b}{b^{\gamma-}} & x^{\gamma-}, \\
\quad x>b .\end{cases}
\end{array} . \begin{array}{l}
\text { Sanity check: } 0<b<k) .
\end{array}
\end{aligned}
$$

Finally, by the verification the, $\hat{V} \equiv V$, and e^{r} is an optimal strategy.
(How does it hook like?).

What about calls?

Example 12.2 (Perpetual American Call)

Similarly, we consider

$$
d X=(r-\delta) x d t+\sigma d B_{t}, \quad X_{0}=x .
$$

with payoff $g(x)=(x-k)$.
Step 1. $V(x)=\sup _{\tau} \mathbb{E}_{x}\left[e^{-r \tau}\left(x_{\tau}-k\right)^{+}\right]$.
There must be a barrier $b>k$ sit. when $X_{t}, 3 \mathrm{big}$ enough, we exercise. Otherwise we wait.

$$
\begin{aligned}
& C:=(0, b) \\
& D:=[b, \infty) . \\
& \tau^{*}:=\inf \left\{t: x_{t} \in D\right\} .
\end{aligned}
$$

Step 2. Let \hat{V} solve.

$$
\left[\begin{array}{rl}
(r-\delta) \times \hat{V}_{x}+\frac{1}{2} \sigma^{2} x^{2} \hat{V}_{x x}-r \hat{V} & =0 ., \quad \underbrace{x<b} \\
\hat{V}(x) & =x-k ., x \geqslant b . \\
\hat{V}_{x}(b) & =1
\end{array}\right.
$$

Step 3 Similarly, we obtain a general solution for v :

$$
\hat{v}(x)=C_{1} x^{\gamma_{+}}+C_{2} x^{(\alpha-)}<0 .
$$

as $x \rightarrow 0, \hat{v} \rightarrow 0 \quad \Rightarrow$ only consider γ_{+}.
ping in "Lontinnons fit" and "Smooth fit":

$$
C_{1}=\frac{b-k}{b^{d_{+}}}
$$

$$
\begin{array}{r}
b=\frac{k d_{+}}{\gamma_{+}-1} \longleftarrow \text { ok if } \gamma_{+}>1 . \\
\text { i.e. } \delta>0 .
\end{array}
$$

when $\partial_{+}>1$.

$$
V=\hat{v}(x)=\left\{\begin{array}{cl}
\frac{b-k}{b^{j+}} \cdot x^{\gamma+} ; & x \in(0, b) \\
x-k, & x \geqslant b
\end{array}\right.
$$

when $\partial_{t}=1: \quad b=\infty$. it's never optimal to exercise!
Remark when $T<\infty$, it's still never optimal to exercise an American call early!
prof. Let $\tau \leq T$ be any stopping time. suppose we exercise at τ. we get $\left(x_{\tau}-k\right)^{\top}$, the value at 0 would be

$$
\mathbb{E}\left[e^{-r \tau}\left(X_{\tau}-k\right)^{+}\right] \leq \mathbb{E}\left[\left(e^{-r \tau} X_{\tau}-k e^{-r T}\right)+\right]
$$

Recall. $\quad M_{t}:=e^{-r t} X_{t}$ is a $\mathbb{Q}-m i g$, for any convex for φ :

$$
\begin{aligned}
\mathbb{E}\left[\varphi\left(M_{T}\right)\right] & =\mathbb{E}\left[\mathbb{E}\left[\varphi\left(M_{T}\right) \mid F_{\tau}\right]\right] \\
& \geqslant \mathbb{E}\left[\varphi\left(\mathbb{E}\left[M_{T} \mid F_{\tau}\right]\right)\right]
\end{aligned}
$$

Jenseris

$$
m \cdot g . \Omega=\mathbb{E}\left[\varphi\left(M_{\tau}\right)\right]
$$

Therefore, since $(x-c)_{+}$convex.

$$
\begin{aligned}
\mathbb{E}\left[\left(e^{-r \tau} X_{\tau}-k e^{-r T}\right)_{+}\right] & \leq \mathbb{E}\left[\left(e^{-r T} X_{T}-k e^{-r T}\right)_{+}\right] \\
& =\mathbb{E}\left[e^{-r T}\left(X_{T}-k\right)_{+}\right] .
\end{aligned}
$$

\Rightarrow Should always wait until T!
Therefor, price of an American call $=\cdots$ European call.
(No dividend, $\delta=0$).

Remark. What happens of $T<\infty$?
(put on call when $\delta>0$).
-Clearly, V is time-deperdent. $V=V(t, x)$.

- The exercise threshold becomes time-dependar : $b=b(t)$.
- $b(T)=K$. (Why? at T we have to make an immediate choice).

The free-bondany now bewmes. (e.g. put)

$$
\left\{\begin{aligned}
V_{t}+\mathcal{L} V-r V & =0
\end{aligned} \begin{array}{rl}
\text { in } C \\
V(t, x) & >(k-x)^{+}
\end{array} \begin{array}{rl}
\text { in } C \\
V(t, x) & =(k-x)^{\dagger}
\end{array} \begin{array}{rl}
\text { in } D \\
V_{x}(t, x) & =-1
\end{array}\right.
$$

- Explicit solution is no lorgen possible. Can study the

Strhethral properties.

