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The heat equation .

Last time : Laplace eqn .

Oh -- o . in -- h 47 .

'( Intro PDE course)
.

today . Hear
equ . UG = OU '

Goat : solve the homogeneous candy IVP

[ Any property with Laplace eqn has an ( complicated) analogue with HE]
-
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Recall . If It .
x ) = O U l t , x ) .
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→ both spare and true .

where X =L Xi , . . . , Xn ) ER
"

is called the ( homogeneous) heat equation .

( HE )

Definitions we consider how HE on a bounded domain i
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ii) Define the parabolically with base D as

DT i = ( o ,T ] x D .

iii) Define the tabby of DT :

PT = DT l Dy
.
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iii) A boundary value of u at a boundary Porno is interpreted as
-

the hunt : Ult , x ) = him his , y )

(Sig)→ ( tix)
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-1hm 6.1 ( Maximum principle ).
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Assume U G C
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CDT ) is a solution of the HE in Dc ,
and

~ he C
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CDT ) n CCDI ) .
extends continuously up to DT . Then

,

i ) Max U = Max U ( weak maximum principle).
DT PT

( global maximum is attained on bdr points )

ii) . If D B connected , and there exists a point ( to , xo ) G Dy
.

Sit ,
U l to , Xo ) = MIX U

,
then
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U B toustant in DT .
( Strong maximum principle ) .
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Remake . . Similar assertions are valid with "

mm
"
.

n Ho ,
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• it) In tureen , spikes
"

will diffuse out over time .

• iii) . Argue by extending a ball to the previous times .



• proof see e.g . PDE book by Evans .

Direct consequence
: Uniqueness of the solution .

Thinly
.

( Uniqueness . on b.did . domains ).

Leo OLE C (Pt ) . HEC CDT ) , assume UEC
"-

CDT ) n C CDT) solves

*, {
Ut - on = I 1h Dy

,

u -- E .

on re
. ,

then k is unique
.
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Assume Ui
,
use both solve 1*7

,
then I ( Ui - ha ) both

solve

g
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,

✓ = o on Pt
.
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.

Then Max ( Ui- Uz ) = min ( Ui - U2 ) =%
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what of D is not b.did . ? Uniqueness still holds for controlled large HI ,

Thm_6
.

( Uniqueness for Cauchy LVP ) .

- mitral value problem .

Let 4- , I be cont , and u solve
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then U 13 unique .

Remark Growth restriction is important . e. g .
there are infinitely many-

8

Solutions to

{
Ut - O U - o . X ER .

Ul 01×7=0 .

,
each of them grows rapidly

without the restriction '

exception UZO

proof .
same as before .

Now we have uniqueness . but do the solutions exist ?

Goal i Find a solution to the Candy Ivp
-

Recall .
. Ln Eb . we characterised all harmonic fans . of the- -

6h20 .

form U = h CHXH )
,
this is called the fundamental solution
T

to the tap lace efn . Intro PBE course .

• In Pne
,
it's a good strategy to identify some explicit

solutions
. first and further assemble more complicated ones .

What is the fundamental solution of the HE ?

Motivation . Leo w solve the horn- Candy problem If -- o )
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-
t ) also solves - a-

.

• The sale invariance suggests we should Lassiter



U l tix> = v 1¥ ) .

• Suppose Ux → o as x→ to ,
Obs

.

It )# U l tix ) da so

p
conservation of energy .

⇒ J * hit , x ) dx = const .

• However
, I
#
Vl 't > dx -- ft)

← veg
> dy .

Thus ,
scale V by dry

.

⇒ Unit > = Ff vLff ) !

Th m 6.4 . ( fundamental so I. to 1- dim HE ) . ( heat inner ).
- .

Leo 61×3 - Tz
,
e-
{ ×'

,
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t > o . X ER ,
then

↳ pdf . Nl 0117 .

g Iti 'd) : - Iff le ( Ef ) is called then fundamental solution to the

1-dim HE
.

Exercise 1 check g. -- Og .

-

properties of g it , x ) ( check ! )

i) .
If x * o , Imo glad ) =0d

'
'

i) tf xx . y.m.ge. . . > ← •
,

} ↳↳ tamrlran . .
.
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iii) /
*
get , × , dx = 1

. for all t > o ( Exercise ) .

ius g is C
-
in it , x )

.

Deft tf! get ,x7 B not a fan in the usual sense , rt is a

distribution on general need ten called Drreedeeta S i

-
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Six - y > fly > dy = fix ) .

✓
notional convenience .
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. Imagine a ten with a centered spike .
On as a measure ;

knit mass at x-o and 0 elsewhere
.

• f ex- y , maps test tens to their value at X
.

.

• f is the
"

derivative
"

of It :C heavy side ton ) .

• We can now make sense of the mitral data and say gits x )

solves the Cauchy problem . :

g . -- og
{ him get , x ) - fix ) .
t de 0

Now what ? - Use the heat kernel to construct solutions .

Idea
± . geo , x ) solves go

-
- og , then g It , x-y > solves it

-



for all × . x-o Cx- y ) does not change HE
.

•

g It , x
- y) @ Ig) solves it as

well .

• Linear hombrnatnon solves it as well i construct

I# glory > Icy ) - dy .

--

↳ what's this ? Convolution !

"

Really :( f * g it ) = 15 fess get -s > ds .

. f- * g - g * f . I check ! )

• Convolution combines smoothness of both fans .

A *Thru =L
A- * whirly =My /

smoothen
.

"

Averaging the valves of f around t went . g .

.

"
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Define Uct , x > i = g it , x > * & 1×3=1]glbx-y> Gig > dy ,
then hit , x ) E C

's

( cons> x IR )
,
and solves the Cauchy

problem

{
Uo - ou

-

- o

UL 01 X ) = 10 ( x ) ,

for b.did and hent . ¢
.

Exercise i plug in g and check it ) .

Finally = in R
"

.

Thmbit
.

( Heat kernel in R" ) .

Leo 41×7 = I exp ( -¥
")
,
X G R

"

,

be the mwltrcaaracs

Standard Giants ran. Pdf ,
then

Jinx ) = nee l 't ) - µ÷¥ eapf - "tf ) is the

fundamental solution of HE in R" .



t.e.me#rilk :
i) fan get , x ) dx = 1 ( cheek).

ii) g co . x ) = fix ) .

• properties and examples i next time .


