F6. The heat equation.

Last time: Laplace eq. $\Delta u=0 . \quad n=h(\|x\|)$. (Intro poeccurse).
Today: Hear equ. $u_{t}=\Delta u$.
Goal: Solve the homogeneous Cancly LVP
[Any property with Laplace equ has an (complicated) analogue wroth $H E$. .]

$$
\partial u \quad \longrightarrow \quad \Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial}{\partial x_{n}}
$$

Recall. $\frac{\partial u}{\partial t}(t, x)=\Delta U(t, x) . \quad \rightarrow$ both space and time.
where $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ is called the (homogeneous) heat equation. (HE)

Definitions We consider now $H E$ on a bounded domain:
i) Leo $D \subset \mathbb{R}^{n}$ be bounded, open, Let $T \in(0, \infty)$.
ii) Define the parabolic cylinder with base D as

$$
D_{T}:=(0, T] \times D .
$$

$i i_{1}$) Define the parabolic boundary of D_{T} :

$$
\Gamma_{T}=\bar{D}_{T} \backslash D_{T} . \quad \longrightarrow " \text { distragnished bor } "
$$

iii) A boundary value of u at a bomeluy point is interpreted as the limit: $u(t, x)=\lim u(s, y)$

$$
\sum_{\text {interior }}^{(s, y) \rightarrow(d x)}
$$

The 6.1 (Maximum priciple).
Assume $u \in C^{1,2}\left(D_{T}\right)$ is a solution of the $H E$ in D_{T}, and $-<n \in C^{1,2}\left(D_{T}\right) \cap C\left(\bar{D}_{T}\right)$.
extends wontinnonsly up to $\overline{D_{T}}$. Then,
i) $\max _{\overline{D_{T}}} u=\max _{\Gamma_{T}} u \quad$ (Weak maximum principle).
(global maximum is a trained on bor points)
ii). If D is connected, and there earsts a point $\left(t_{0}, x_{0}\right) \in D_{T}$. sit. $u\left(t_{0}, x_{0}\right)=\max _{\bar{D}_{T}} u$, then
U is constant in $\bar{D}_{t_{0}}$. (Strong maximum principle).
ice.

Remark. Similar assertions are valid with "min".

- ir) Intureroni" spilhes" will diffuse out over time.

- iii). Argue by extendify a ball to the previous times.
- proof see eeg. PDE book by Evans.

Direct consequme: Uniqueness of the solution.
The 6.2. (Uniqueness on bidid. domains)
Let $\Phi \in C\left(\Gamma_{T}\right), \Psi \in C\left(D_{T}\right)$, assume $u \in C^{1,2}\left(D_{T}\right) \cap C\left(\bar{D}_{T}\right)$ solves
(*) $\left\{\begin{aligned} u_{t}-\Delta u & =\Psi & & \text { in } D_{T} . \\ u & =\Phi . & & \text { on } \Gamma_{T} .\end{aligned}\right.$
then u is unique.
Pf. Assume u_{1}, u_{2} both solve ($*$), then $\pm\left(u_{1}-u_{2}\right)$ both solve

$$
\left\{\begin{aligned}
V_{t}-\Delta V & =0 & & \text { in } D_{T} . \\
V & =0 & & \text { on } \Gamma_{T} .
\end{aligned}\right.
$$

Then $\max \left(u_{1}-u_{2}\right)=\min \left(u_{1}-u_{2}\right)=0$ ie. $\quad u_{1}-u_{2} \equiv 0$.

What if D is not bidid.?. Uniqueness still holds for controlled large $|x|$.
The 6.3. (Uniqueness for Cauchy LVP).
initial value problem.
Let 4, Φ be cont, and n solve

$$
\left\{\begin{array}{c}
u_{0}-\Delta u=\Psi, \quad x \in \mathbb{R}^{n} . \\
u(0, x)=\Phi(x),
\end{array}\right.
$$

given that $|u(x, t)| \leq A e^{a|x|^{2}}, A, a>0$.
then u is unique.

Remark, Growth restriction is important. Cig. there are infinity many Solutions to

$$
\left\{\begin{array}{c}
u_{*}-\Delta u=0 . \quad x \in \mathbb{R} . \\
u(0, x)=0 .
\end{array}\right.
$$

withow the restoration.
s each of them grows rapidly except for $u \equiv 0$
proof, same as before
Now we have uniqueness. but do the solutions exist?
Goal: Find a solution to the Cancly IV P
Reall: L L_{1} F6. we characterised all $\frac{\text { harmonic tons. of the }}{\Delta u=0}$ form $u=h(11 \times 11)$, this is called the $\frac{\text { fundamental solution }}{l}$ to the laplace equ. Into Pb course.

- In PDE, it's a good strategy to identify some explicit solutions first and further assemble more complicated ones.

What is the fundamental solution of the $H E$?

Motivation. Lee u solve the hom-Cancly problem $(f=0)$ 1D. - u(ax, $\left.a^{2} t\right)$ also solves -"-

- The scale invariance suggests we should consider

$$
u(t, x)=v\left(\frac{x^{2}}{t}\right) .
$$

- Suppose $u_{x} \rightarrow 0$ as $x \rightarrow \pm \infty$, obs.

$$
\begin{aligned}
& \frac{\partial}{\partial t} \int_{\mathbb{R}} u(t, x) d x=0 \\
& \Rightarrow \int_{\mathbb{R}} u(t, x) d x=\text { canst. } \\
& \text { - Honservation of energy: } \\
& \text { Hover }, \int_{\mathbb{R}} v\left(\frac{x}{\sqrt{t}}\right) d x=\sqrt{t} \int_{\mathbb{R}} v(y) d y .
\end{aligned}
$$

Thus, scale v by $\frac{1}{\sqrt{t}} . \Rightarrow u(x, t)=\frac{1}{\sqrt{t}} v\left(\frac{x}{\sqrt{t}}\right)$!
The 6.4. (Fundamental sol. to 1-dim HE). (heat kernel).
Let $\varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}, t>0, x \in \mathbb{R}$, then \rightarrow pelf. N(0,1).
$g(t, x):=\frac{1}{\sqrt{2 t}} \varphi\left(\frac{x}{\sqrt{2 t}}\right)$ is called then fundamental solution to the 1-dim $H E$.

Exercise 1 Check $g_{t}=\Delta g$.
properties of $g(t, x)$ (check!)
$\left.\begin{array}{l}\text { i). If } x \neq 0, \lim _{t \neq 0} g(t, x)=0 \\ \text { ii) If } x=0, \lim _{t \downarrow 0} g(t, x)=\infty .\end{array}\right\}((x)$ looks familiar...
iii) $\int_{\mathbb{R}} g(t, x) d x=1$. for all $t>0$ (Exercise).
iv) g is C^{∞} in (t, x).

Def $6.5 \lim _{t+0} g(t, x)$ is not a fen in the usual sense, of β a
distribution or generalized fen called Draedecta δ :

$$
\int_{\mathbb{R}} \delta(x-y) f(y) d y=f(x) .
$$

notional convenience.
Remark: - Imagine a fen with a centered spike. Or as a measure: unit mass at $x=0$ and O elsewhere.

- $\delta(x-y)$ maps test fens to their value at x.
- δ is the "derivative" of H : (hearyside ton).
- We can now make sense of the initial data and say $g(a x)$ solves the Canchy problem:

$$
\left\{\begin{aligned}
g_{t} & =\Delta g \\
\lim _{t+0} g(t, x) & =\delta(x) .
\end{aligned}\right.
$$

Now what? -Use the heat kernel to construct solutions.

Idea i. $g(t, x)$ solves $g_{t}=\Delta g$, then $g(t, x-y)$ solves it
for all $x . \quad x \rightarrow(x-y)$ does not change $H E$.

- $g(b, x-y) \Phi(y)$ solves it as well.
- Linear combination solves it as well: construct

$$
\int_{\mathbb{R}} \underbrace{}_{\longrightarrow \text { What's this? Convolution! }} \quad \underbrace{\varphi(t, x-y) \Phi(y)} d y \text {. }
$$

- Recall $\cdot(f * g)(t)=\int_{-\infty}^{\infty} f(s) g(t-s) d s$.
- $f * g=g * f$. (check!)
- Convolution combines smoothness of both fens.

$$
\begin{aligned}
& \int * \int_{\sqrt{ }}^{\ln _{w_{n}}}=? \\
& \square \operatorname{Min}_{4}=\sqrt{ }{ }^{\text {M }}
\end{aligned}
$$

Smoothen.
smoothen.
"Averagnif the values of f around t wirit. g :"

Thy 6,6 Define $u(t, x):=g(t, x) * \phi(x)=\int_{-\infty}^{\infty} g(t, x-y) \phi(y) d y$, then $u(t, x) \in C^{\infty}((0, \infty) \times \mathbb{R})$, and solves the Cauchy problem

$$
\left\{\begin{aligned}
u_{t}-\Delta u & =0 \\
u(0, x) & =\Phi(x)
\end{aligned}\right.
$$

for bidid and cont. Φ.
Exercise: ping in g and check (*).

Finally $=$ in \mathbb{R}^{n}.
Thm6.7. (Heat kernel in \mathbb{R}^{n}).
Let $\varphi(x)=\frac{1}{(2 \pi)^{\frac{n}{2}}} \exp \left(-\frac{\| x n^{2}}{2}\right), x \in \mathbb{R}^{\eta}$, be the multruariato standard Gaussian pdf, then fundamental solution of $H E$ in \mathbb{R}^{n}.

Remark :i) $\int_{\mathbb{R}^{n}} g(+, x) d x=1$ (cheek).
ii) $g(0, x)=f(x)$.

- properties and examples : next time.

